EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2008), pp. 1-8
C. Alvarado and M.- P. Cani (Editors)

Volume Painter: Geometry-Guided Volume Modeling by
Sketching on the Cross-Section

S. Owada!, T. Harada?, P. Holzer!, and T. Igarashi®

'Sony Computer Science Laboratories, Inc., *The University of Tokyo, >University of Munich

Abstract

We propose a sketch-based system to design volume data from scratch. The user splits a surface model and
paints brush strokes to volumetrically fill the 3D space. We extend exisiting sketch-based modeling systems in
various ways. First, we use the cross-sectional plane as the interface to design internal structures. Second, the
predefined surface geometries are used to guide the synthesis process from 2D cross-sectional information to 3D
spatial distribution. Third, the 3D solid modeling process is decomposed into two phases: space division and color
particles distribution. The user divides the space into multiple regions, each of which corresponds to an uniform
texture. The texture is designed by distributing particles in the regions, guided by the surface geometries that
define the boundaries. We performed a survey to examine how people associate 2D cross-sectional information
to 3D, and reflected the result in designing the system. Our system is capable of producing a wide variety of
non-photorealistic volumetric objects such as foods, anatomic/biological models or furry models.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Methodology and Tech-
niqueslnteraction techniques; 1.3.5 [Computer Graphics]: Computational Geometry and Object ModelingGeomet-
ric algorithms, languages, and systems, Object hierarchies;

1. Introduction

Easily generating volume data has been one of the cen-
tral challenges to make volume graphics a standard tool for
contents creation. We believe that volumetric information
is very important for contemporary computer graphics in
games or real-world simulation, as it allows more interac-
tion with synthetic objects, such as to cut, explode, or sim-
ulate them [CSCO06]. However, we lack tools to intuitively
and easily create volumetric objects. Our experience shows
that the most practical tool is a procedural approach that
requires scripting or parameter tuning [Per85, Pea85]. This
method is very effective for noisy and/or fractal-like patterns
but not immediately useful for semi-regular, user-controlled
geometric patterns, particularly because of the user inter-
face limitation. Another promising approach is the example-
based solid texture generation, which usually inputs one or
more 2D sample textures to generate a solid texture pattern.
Although there are some remarkable previous work in this
domain [HB95, Wei01, KFCO*07], they are basically auto-
matic isotropic solid texture synthesis algorithms from 2D
exemplars. Therefore, how to design texture from scratch,
how to synthesize anisotropic texture, how to specify the re-
gion to synthesize and introduce the anisotropy, and how to
achieve interactive performance, are still unsolved problems.
Our goal is to design a solid 3D texture from scratch, with in-
tuitive, simple, and interactive user interface. To achieve this
goal, we propose the system that has three main novel as-
pects: (1) our system utilizes the cross-sectional plane as the
design interface. Since a cross-sectional plane is a 2D entity,

submitted to EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling
(2008)

the user can easily provide necessary information by a 2D
mouse. (2) Surface geometries are used as guides to propa-
gate cross-sectional information to 3D space. We performed
an informal survey to verify that humans can associate 3D
structure from 2D information on the cross-sectional plane.
We utilized the knowledge to design the algorithm. (3) The
user designs volumetric textures by a space division (seg-
mentation), followed by color particle multiplication (tex-
ture assignment). This coarse-to-fine editing scheme well
matches the typical design procedure. We believe our system
is the first that offers interactive and intuitive, sketch-based
volumetric texture modeling from scratch (Figure 1). The
behavior of our system is supported by our questionnaire re-
sult to examine the tendency of humans in associating 2D in-
formation to 3D. This is in contrast to previous work where
2D to 3D algorithm is devised based on the researcher’s in-
tuition, and our design scheme is another contribution of this

paper.

2. Our approach

The active use of the cross-sectional plane is based on the
fact that we can easily imagine the 3D volumetric struc-
ture from a 2D technical illustration which exhibits only
a cross-section of a volumetric object (See Figure 2). It is
also very conveneient for a standard setup of a personal
computer, which is equipped with a mouse that can pro-
vide only 2D geometric information. The idea to use the
cross-sectional plane as the interface for volumetric design



2 S. Owada & T. Harada & P. Holzer & T. Igarashi / Volume Painter

Figure 1: Overview of our system. The user first creates an
outer shape and splits it by a plane, which is then used as
the design interface(a). Then they split it into regions, using
surface geometries as the guide (b), and assigns textures by
color particles, which are multiplied and distributed into 3D
space, again using surface geometries as the guide (c,d). The
system outputs a set of 3D particles as the volumetric color
assignment (e).

is not new. Owada et al. proposed a sketch-based modeler
that can create non-genus-one solid object without textures
[ONNIO3]. They also proposed the Volumetric Illustration
system, which defines internal pseudo solid textures by as-
signing 2D exemplar texture fragments on the cross-section
[ONOIO4]. Pietroni et al. recently proposed an image-based
system to assign realistic solid texture to the inside of an
object by morphing a few number of cross-sectional im-
ages [POB*07]. In this paper, we try to unify their notion
to use cross-sectional plane as the volumetric design canvas,
which allows the user to design a 3D colored texture from
scratch, without using any example textures.

Our strategy to interpret 2D cross-sectional information as
the definition of the 3D spatial distribution is strongly guided
by the geometry of the enclosing surfaces, called guiding ge-
ometries. Previous sketch-based modelers also infer 3D in-
formation from 2D, but they usually do not consider the con-
textural information-the enclosing geometry (Figure 4). We
performed an informal survey to confirm that the way hu-
mans associate 2D cross-sectional information with invisi-
ble 3D structure is strongly affected by the enclosing surface
geometry (Figure 10, 11,12).

The actual modeling process of our system consists of two
phases: space division and color particles multiplication. The
modeling domain must be first divided into several regions
that have different textural appearances (Figure 1b). Then
the each region is filled by multiplication of color particles,
considering the geometry of the outmost and the space di-
viding surfaces (Figure 1c,d,e). It is important to combine
these two features, since most meaningful models consist of
multiple types of textures in one model, each of whose ap-
pearance reflects the boundary surfaces (Figure 2).

In addition, the entire model can be interactively de-
formed by applying a grid-based 2D deformation tech-
nique in the projected space [IMHOS5]. Existing 3D defor-
mation algorithms usually work only on the surface geom-
etry [SZT*07, SSP0O7], while our system can interactively
deform internal structure that follows the guiding surface,
without losing textural appearance and interactive perfor-

mance. While related works are mainly in the 2D domain
[FHO7, ASO7], we focus on 3D texture re-synthesis.

Our work is an experimental system that tries to mimic the
human ability to associate 2D with 3D. Although our system
is not capable of designing all possible 3D textures, it can
still produce a wide variety of models with little user interac-
tion, especially non-photorealistic styled volume data, such
as technical illustrations. In contrast to the photo-realistic
modeling that usually requires scanned data from the real
world, our focus is on designing volume data from scratch
by simple sketch-based user interface and manual painting
of color particles.

-’gf’» il

e

Figure 2: Examples of technical illustration

3. Related work

Automatic 2D stroke to 3D algorithms were originally
discussed in the context of sketch-based modeling. The
SKETCH system utilizes a set of 2D gestural operations to
input 3D shapes without altering the viewpoint [ZHH96].
The Teddy system extends the idea of using 2D gestural in-
puts to define 3D geometry [IMT99] by applying a plausi-
ble assumption of the target shape, achieving a highly intu-
itive response to the 2D input. These systems were refined
to produce commercial softwares [Ske] and further extended
in recent works [KHO06, NISAO7]. One limitation in most of
previous work is that the mapping from 2D to 3D is fixed. In
other words, a given 2D stroke gives always the same object.
However, if the input 2D stroke is enclosed by other geome-
tries, the mapping should be strongly affected by them. Our
system is novel in this aspect: we actively use the nearby
geometry to generate 3D from 2D.

Solid texturing has been an important technique to ap-
ply 3D-consistent organic appearance to 3D objects [PerS85,
Pea85]. The procedural technique is further extended to gen-
erate more complicated objects [KPHEO02], with possible
guidance by an external geometry [CDM*02]. However, pro-
cedural techniques usually lack intuitive user interface for
modeling. One exception is the system proposed by Phan
and Grimm, which adopts a sketching interface to control
procedural textures [PGO06]. One remarkable feature of their
system is the global control of the texture orientation and
sizes. Unfortunately, their system is applied only in 2D do-
main, and the user-controllability is not sufficient. Image-
based solid texture synthesis techniques were also devel-
oped [HB95, Wei01, KFCO*07]. They used 2D sample im-
ages as input and automatically produce 3D solid textures.
While such interfaces are easy to use, no interactive sys-
tems were proposed. In addition, we focus more on design-
ing solid texture from scratch, without any predefined exm-
plars.

submitted to EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2008)



S. Owada & T. Harada & P. Holzer & T. Igarashi / Volume Painter 3

Automatic multiplication of elemental objects is a key
technique to facilitate the 3D modeling process. Geome-
try synthesis is an approach that tries to achieve this goal
[ZHW*06, Mer07]. Barla et al. proposed a new 2D texture
synthesis technique applied to vector graphics [BBT*06].
This work shows nice results in synthesizing isotropic 2D
textures. Schwarz et al. recently proposed an interactive sys-
tem that automatically multiplies color particles on a 2D can-
vas [SIMCO7]. Ijiri et al. also proposed another 2D synthe-
sis technique for discrete objects [IMMIO8]. These are direct
previous work, though these deal only with 2D domain. In
addition, some previous techniques offer global control of
the arrangement [SIMC07,IMMIO8]. However, the informa-
tion should be supplied by an additional user input that pro-
vides guiding field information. Our system infers the global
distribution of particles from local examples that are natu-
rally provided by the user.

4. User interface

We first overview the user’s experience. Our system works
together with the Teddy system [IMT99]. The surface model
designed and saved with the Teddy system is automatically
loaded in our software.

In our modeler, the user begins in split mode: they first
draw a straight line that splits the model into two by a cross-
sectional plane. Then they can either divide the inside of the
model into multiple regions, or start volumetric painting by
switching to paint mode. (We use the term ‘split’ for the ini-
tial cutting operation that splits the outmost surface object
into two by a plane, while ‘divide’ is used for subdividing
the internal space into multiple regions, by non-planar sur-
faces in most cases.) If the user wants to divide the inside of
the model, they draw dividing strokes on the cross-sectional
plane. The strokes are converted into 3D surface by the al-
gorithm described in Section 5. If the user draws a closed
stroke, the system automatically inflates the contour to make
a closed, floating region on the cross-sectional surface (Fig-
ure 3(a-b)). If the user draws an open stroke that divides the
cross-sectional region into two parts, the internal space of the
object is divided into two regions, with the newly generated
surface touching the outer object (Figure 3(c-d)). The advan-
tage of our system is that the inflated surface geometry usu-
ally better matches human intuition than simple geometry-
oblivious inflation algorithm. For example in Figure 4, the
user is more likely to expect isocontour-like surface genera-
tion, although existing algorithms produce small blobby ob-
ject. This tendency is clearly observed from the result of our
questionnaire (See section 5.)

After the space is sufficiently divided, the user can change
the mode to volume painting mode by pressing a toolbar but-
ton. Three tools are available in the paint mode: a smooth
brush (Figure 5 left), a pencil brush (Figure 5 center), and a
flood fill tool (Figure 5 right). The smooth brush is a brush
with a transparent edge. The pencil brush presents a hard
edge on the boundary. These brushes are visualized by bill-
board meshes with alpha blending information. The flood fill
tool fills a connected region with an uniform color.

Smooth/pencil brushes on the cross-sectional plane de-
fine example color particles that should eventually fill the
whole 3D region. When the user triggers the multiplication
by a mouse click, the system automatically finds (a set of)
boundary surfaces that are most closely correlated to the ex-
ample particles. We assume that the particles are arranged

submitted to EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2008)

~— N
*Q

(c)
Figure 3: Drawing space-division curve on the cross sec-
tion.
Outer geometry / N
G§ne ated H
Jtiy BCC\ '
Cross-ﬁcctmnal
pla
User drawn stroke

Typi cal systems Our system

(outer geometry aware -
(outer geometry oblivious) produces isgcontour-like

surface)

Input

Figure 4: Advantage of our system. The closed contour
drawn on the cross-section, which looks like an offset bound-
ary of the outer surface, tends to be thought of as the cross-
section of the isosurface. Existing algorithms do not neces-
sarily produce isocontour because they do not consider the
outer geometry.

as a layer, whose geometry is guided by the boundary sur-
faces [CDM™*02]. Then the system automatically multiplies
the example particles and distributes them into 3D space us-
ing the boundary surfaces as a guide (Figure 6). If the ob-
ject is split into multiple regions, our system tries to find the
(combination of) surfaces that most closely guide the pro-
vided particles (Figure 7).

Pencil brush Flood fill

Smooth brush

Figure 5: Brush types

One novel feature of our system is the deformation of tex-
tured objects. When the user deforms the object, our system
first applies the deformation only to the external and splitting
surfaces and then the internal texture is re-synthesized, in-
stead of only deforming the textured domain (Figure 8). The
information specified by the user when creating the object
is always stored in the system and used for this re-synthesis
process. We consider that re-synthesis is very important be-
cause just applying deformation and displacement of the par-
ticles can produce undesired local density variations, thereby
changes the appearance.

The defined set of particles and background colors are
previewed by OpenGL alpha blended polygons. The user can



S. Owada & T. Harada & P. Holzer & T. Igarashi / Volume Painter

o

Figure 6: The user-drawn cross-sectional color particles are
automatically multiplied and distributed in 3D, using the ge-
ometry of the enclosing surface.

Figure 7: The system determines which geometric object
should guide the multiplication of the color particles.

optionally generate a regular grid of colored voxels and use
it as a solid texture for the out most surface object. The user
can interactively cut and explore the 3D texture distribution
(Figure 9).

5. Preliminary Study

We first performed an informal survey on how people in-
fer invisible 3D geometry from 2D information on a cross-
section. Figure 10 is the questionnaire sheets we distributed.
Each question shows a 3D object that is split into two parts
by a plane. On the cross-section, one or more contours are
drawn. The subjects were asked to extend the cross-sectional
contours into 3D space and draw the outline on the sheet.
Figure 11,12 shows the summary of the result. The number
below each answer shows the number of subjects that gave
a similar answer. Some subjects drew nonsense lines, which
are not counted.

For closed strokes, the expected shapes are clearly guided
by the enclosing object (question a-h). If the user-drawn con-
tour line closely follows the cross-sectional shape, then the
extende surface also follows the enclosing surface geometry
(question a,c,e,f). Otherwise the contour tends to be swept
along the axis of the enclosing object (question b,d,e,g,h). If
no distinct axis is found in the enclosing object, or the axis
strongly curves, the sweep may be terminated, possibly with
a smooth end, like a simple geometry-oblivious inflation in
existing sketch-based modeling system (question a,b,d,h).

Open strokes also generate the surface which tends to fol-
low the surface (question i,p,q,r). However, simple sweeping
of the stroke along the direction perpendicular to the cut-
plane is also distinct (question m,0,s,t).

Figure 8: The user can deform the model after the automatic
particle distribution (red squares indicate anchor points
which the user can move.) The particles are re-synthesized
to retain the appearance, following the new geometry.

Figure 9: Interaction mode where the user can interactively
cut the model and explore the spatial distribution of the gen-
erated solid texture

6. Space division

Based on the preliminary study, we categorize the splitting
strokes into three types: (1) a closed stroke that is entirely
enclosed in the area to be split, and all sample points of
the stroke are located almost at the same distance from the
boundary (as in question a,c,e.f), (2) a closed stroke that is
entirely enclosed in the area to be split, but the distance be-
tween sample points of the stroke and the boundary surface
has large variance (as in b,d,g,h), and (3) an open stroke that
starts and ends outside of the region and intersects the region
(asin i-t).

Differenciating types (1) or (2) is performed by check-
ing if the variance of the distance between the sample points
of the stroke and the considered surface is over a threshold
value. To cancel the effect of scaling, we normalize the dis-
tance values on the stroke by dividing it by the distance value
at the deepest position on the cross-section.

(1) Offset division Offset division happens if the closed
stroke is entirely enclosed in the area to be split, and all sam-
ple points of the stroke are located almost at the same dis-
tance from the boundary (See Figure 4, for example.) The
resulting 3D surface should be the isosurface of the outer
surface at the given distance. This is simply done by March-
ing Cubes algorithm for the distance function of the bound-
ary [LC87]. If there are multiple connected components in
the result, only the closest to the drawn stroke is generated.

(2) Sweep division If the closed stroke is entirely en-
closed in the area to be split, but sample points are not on
a unique isosurface, the stroke should be swept along the
axis perpendicular to the cross-sectional plane. According
to the survey, the generated surface should hold the follow-
ing properties: (1) the sweep axis tends to follow the enclos-
ing geometry, (2) if the axis is too curved, the swept stroke

submitted to EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2008)



S. Owada & T. Harada & P. Holzer & T. Igarashi / Volume Painter 5

Figure 10: The questionnaire sheet we distributed. One or
more contours are drawn on the cross-section of an object
and the subjects are asked to extend the contour into the ob-
Ject.

AR
@ 1dd @
S ohbd D
) T T TSI
e
LY

e B8
" A

, @ BB
Sasas

3
‘NN Ew
"Lttt e

Figure 11: Answers for the questionnaire. We classified the
answers for each question into several typical types. The
number below an answer indicates the number of subjects
who expect the corresponding result. There is a clear ten-
dency that the extended shape follows the outer geometry.

should be shrunk, (3) sweep is terminated if the distance
function changes too much or self occlusion hass happened,
and (4) the stroke is never enlarged during the entire sweep
process (Figure 11b,h).

To satisfy these requirements, sweep is performed in the
step-by-step manner. Starting from the user-drawn dividing
stroke, it is slightly displaced along the normal direction of
the cross-section, and deformed by a nonlinear optimization
technique, to satisfy the above mentioned requirements. The

submitted to EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2008)

Iy

; L
”'E/'a»:s/ -~

- & @
Ladal ol oYl
o D P
o P B
T2
Laldalalal
L
5D
L R A Y

Figure 12: More answers for the questionnaire

objective function to be minimized to compute i-th contour
is represented as follows:

Acllei = cizt|] +As(si —si—1)

+ZD(ci +si(pi-1,j—¢i-1)) = D(pi-1,j),
j

where Aq, A, are scalar constants to suppress the sudden
change of the contours, || - || is the root-sum-square of a vec-
tor value, a 3D vector ¢; and a scalar value s; are unknowns,
representing the gravity center of the new contour and the
scaling factor, respectively. ¢;_1 is the gravity center of pre-
vious contour, s;_ is the scaling factor of the previous con-
tour, p;_1,. is each sample point on the previous contour, and
D(-) is the distance function of the enclosing geometry. The
variable ¢; only moves on the plane parallel to the cross-
sectional plane, while s; is between 0 and 1.

After the optimization, the new center of the contour (c;)
and the scaling factor (s;) are determined. If s; is too small
or the new contour does not fit into the enclosing geometry,
or, ¢; or s; change too much, the sweep is terminated.

(3) Open-stroke division If the stroke does not start and
end inside the object, it is considered as an open division
stroke. For this type of splitting stroke, we switch the surface
generation algorithm by pressing the modifier key on the
keyboard. This is based on the fact that the result of question-
naire shows two different types of generated surfaces (Figure
10). If the shift key is pressed during operation, the divid-
ing stroke is swept along the direction perpendicular to the
cutplane (Figure 13(a)). Otherwise, we find start/end points
that cross the boundary of the object, and split the object by
the plane that contains the points and perpendicular to the
cross-sectional plane, producing a closed contour that passes
through the points. The system then generates a surface such
that its silhouette matches the drawn contour (Figure 13(b)).
This algorithm amounts to the ‘Extrusion’ algorithm in the
Teddy system, while in our system, the initial contour to be



6 S. Owada & T. Harada & P. Holzer & T. Igarashi / Volume Painter

swept reflects the outer surface geometry (See [IMT99], sec-
tion 4.4.) Although this algorithm does not consider the dis-
tance function of the enclosing surface geometry, it produces
the similar effect as the questionnaire (Figure 11,12).

-

(b) Without shift

Open split stroke (a) With shift

Figure 13: An example of open stroke division.

7. Object-guided color particle distribution

After the space is divided into one or more regions, the user
assigns textural information to each of them. Our system al-
lows the user to directly paint color particles on the cross-
sectional plane and automatically propagates them into the
3D region. This is in contrast to previous systems, which
use an example image as input [ONOIO4, POB*07]. We are
more interested in manual color assignment from scratch,
and focus specially on textural patterns that consist of a set
of small color particles. The user specifies a few number of
example colored particles on the cross-sectional plane, and
the system automatically distributes them into the 3D space
with consideration on the particles layout and guiding ge-
ometry. This process is also similar to some previous sys-
tems [BBT*06,SIMCO07,IMMIO8]. However, we propose the
system to convert from 2D domain to 3D, without explicitly
supply the global control information.

Our system consists of two phases: analysis and synthe-
sis. The analysis phase gathers information from the color
particles manually specified by the user, and associates them
with the enclosing geometry. The synthesis phase actively
generates and layouts synthetic particles into 3D space. We
explain these phases as follows.

7.1. Analysis

In this phase, three properties are assigned for each given
particles: density, field value, and orientation, which are rep-
resented as d;, fi,0;, respectively (i is the index of the corre-
sponding particle.) In our system, density d; is defined as the
distance to the center of the closest adjacent particle. Field
value f; is the distance from the outer guiding boundary to
the center of the particle (Figure 14). However, if multiple
boundaries are defined, it is undetermined which distance
function to be used. Therefore, the system evaluates all pos-
sible combinations of distance functions and take the combi-
nation that produces the smallest variance of the field values
fi (see Figure 7). We call this combined reference distance
function Dy. Multiple distance functions are combined by
taking the minimum absolute value of the functions. Orien-
tation o; is the angle between the gradient of Dy and the 3D
unit vector that is the principal axis of the particle (particles
are usually given as a set of successive sample points.) Since
the same set of points produces two opposite directions for
the principal axis, we choose the one that corresponds to the
drawing orientation of the particle: from the first point to the
last point.

Gradient

Adi " direction
ljacen
particle

Object boundary

Inside

Center of
particle

Outside

Particle
direction

N\

Field yalue (fi)

User-drawn
color particle

Figure 14: Variables in analysis phase

7.2. Synthesis

In the synthesis phase, the system first allocates a float-
valued voxel grid. This regular voxel grid, called Vi, is
aligned with the bounding box of the external surface. We
set the resolution of this voxel to be constant: 128 voxels
along the longest axis (this number affects the granularity of
particle density.) Each voxel in Vj is either initialized as zero
(if it is inside of the domain to be filled by particles), or as
—oo otherwise.

Our algorithm generates color particles, whose mutual
distances are close to the given examples. This process is
analogous to Poisson disc sampling, where the minimum
distance between sample points is bounded. In our system,
the maximum distance is also controlled. The system starts
updating V by given example particles (Figure 15a,b). One
particle is associated with a spherical region whose radius
is d; and whose center is at the center of the original parti-
cle (Figure 15b). The inside of the spherical region holds the
value —oo (which means disabled voxels: colored in white in
Figure 15b), while the boundary region is 1, which means
active voxels used for future synthesis of particles (colored
in red in Figure 15b). These spherical regions, associated
with example particles, are added to Vy (Figure 15b). Since
adding any number to —oo makes —eo, the region near parti-
cles is filled by —eo, and the boundary region holds a positive
value.

After the given example particles are processed, new par-
ticles are added one by one so that the distance from existing
(already generated) particles to the new object is close to the
desired density value. The value stored at each voxel is the
probability of the position to be the center of the next syn-
thesized particle. Therefore, the voxels whole value is equal
to or less than 0 will not be used as the next particle position.

We describe this process in detail. To synthesize one new
particle, we first randomly select one particle from given ex-
ample particles (we assume the index of the selected particle
is j) Then we select voxels in Vs where the distance function
(Dy) value at the position is close to f; (field value of the
sample particle - See Figure 15c. Voxels that share the same
distance value as f; are colored in green). This ensures that
the synthesized particle is on the same isosurface of D ¢. This
also means that the isovalue that is not present in the input
particles will not be used for synthesis, producing layered
appearance of the final particle arrangement.

We randomly choose one voxel in the selected voxels,
with the probability proportional to the voxel value in V.

submitted to EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2008)



S. Owada & T. Harada & P. Holzer & T. Igarashi / Volume Painter 7

Active area
(used for
future sampling)

Particle
rientation
Given outer Examples
boudary
(a) Initial voxel values  (b) After rendering
of examples
Isocontour of
selected example
Region used for
ext particle
generation
Selected
example
(c) Finding new (d) After new particle
particle location rendering

Figure 15: A 2D example of updating Vi by adding one par-
ticle. —oo voxels are colored in light blue, 0 in white, posi-
tive values in red (the stronger the red, the larger the value).
Small cross indicates the position of particles. The out most
square area is the bounding box of the external surface.

The location of the chosen voxel is the newly generated par-
ticle’s position. We sample the gradient of D at the position
and determine the orientation of the new particle, according
to the original angle value o; (rotational degree of freedom
along the the gradient is randomly specified.) The shape of
the new particle is the same as the original example particle.

We finally update V; as exactly in the same way as for
example particles (Figure 15d). This process (Figure 15c-
d) is repeated until no voxels are selected in searching new
location for synthesis.

7.3. Deformation

One of the prominent features of our system is that it sup-
ports deformation of the model after the internal texture has
been specified. The system stores the source particle infor-
mation used for each particle multiplication operation and
applies it when the outer surface is deformed.

We adopt [IMHOS] for the deformation of the surface
model. When the user switches to the deformation mode, the
screen space is tessellated by a 2D triangular mesh (Figure
16a). Then the user defines some anchor points and interac-
tively moves one of them (Figure 16b,c).

When the user releases the mouse button, the system re-
computes the distance function of the new surface model,
repositions the original source particles, and finally performs
synthesis of the particle once more time.

submitted to EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2008)

Figure 16: An example of deformation

8. Results

Figure 1 shows the process of texture detail propagation. The
color particles on the cross-sectional plane are multiplied
into the 3D space, following the external geometry of the
region. In our system, the distance field maxima does not
have to be a specific topological type: point, curve or sur-
face. Figure 17 shows more results created by our system.
Radial or layered structure is very common and is faithfully
designed by our user interface. Our exprience shows our sys-
tem is more suitable to create non-photorealistic looking ob-
jects, because our primary goal was to design a solid tex-
ture from scratch, without any predefined textural informa-
tion. We think that photo-realistic texture generation requires
photos taken from the real world. Our system is also suitable
to easily create furry models as shown on the right of the
Figure 17.

The time to generate particles is proportional to the prod-
uct of the number of particles and the number of voxels (128
voxels along the longest axis, in our case). Our current im-
plementation generates more than 100 particles per second,
with 2.4GHz Core2 duo processor, 4GB memory, on Win-
dows XP.

9. Conclusion and future work

We proposed a sketch-based volume modeling tool using
cross-sectional plane as the interface. The modeling pro-
cess is guided by surface objects, called guiding geometries.
These concepts are applied for sketch-based space division
and color particle distribution. We also proposed a deforma-
tion interface that alters the surface geometry, as well as
the internal volumetric structure. Using our system, users
can easily and interactively generate solid texture data from
scratch.

One of the limitations of our system is the restricted use of
field functions. We observed that our distance function is the
most significant and meaningful guiding function. However,
in some cases, a direct use of the distance function produces
counterintuitive results. In such cases, it may be necessary to
modulate the distance function.

In the future, we hope to extend this system to support
animated objects, aiming at educational purposes. We also
hope to support highly structured textures.

References

[ASO7] AVIDAN S., SHAMIR A.: Seam carving for
content-aware image resizing. ACM Trans. Graph. (Proc.
Siggraph ’07) 26, 3 (2007), 10.



8 S. Owada & T. Harada & P. Holzer & T. Igarashi / Volume Painter

Figure 17: Results.

[BBT*06] BARLA P., BRESLAV S., THOLLOT J., SIL-
LION F., MARKOSIAN L.: Stroke pattern analysis and
synthesis. In Computer Graphics Forum (Proc. Euro-
graphics "06) (2006), vol. 25, pp. 663—-671.

[CDM*02] CUTLER B., DORSEY J., MCMILLAN L.,
MULLER M., JAGNOW R.: A procedural approach to au-
thoring solid models. ACM Trans. Graph. (Proc. Siggraph
'02) 21, 3 (2002), 302-311.

[CSC06] CORREA C., SILVER M.-D., CHEN M.: Feature
aligned volume manipulation for illustration and visual-
ization. [EEE Transactions on Visualization and Com-
puter Graphics (TVCG) 12, 5 (2006), 1069-1076.

[FHO7] FANG H., HART J. C.: Detail preserving shape
deformation in image editing. ACM Trans. Graph. (Proc.
Siggraph ’07) 26, 3 (2007), 12.

[HB9S] HEEGER D. J., BERGEN J. R.: Pyramid-based

texture analysis/synthesis. In Proc. Siggraph *95 (1995),
pp. 229-238.

[IMHO5] IGARASHI T., MoscovicH T., HUGHES J. F.:
As-rigid-as-possible shape manipulation. ACM Trans.
Graph. (Proc. Siggraph '05) 24, 3 (2005), 1134-1141.

[IMMIO8] Isirl T., MECH R., MILLER G., IGARASHI
T.: An example-based procedural system for element ar-
rangement. Computer Graphics Forum (Proc. Eurograph-
ics 2008) 27, 2 (2008), 429-436.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.:
Teddy: a sketching interface for 3d freeform design. In
Proc. Siggraph ’99 (1999), pp. 409-416.

[KFCO*07] Kopr J., Fu C.-W., COHEN-OR D.,
DEUSSEN O., LISCHINSKI D., WONG T.-T.: Solid tex-

R (ONNIO03]

ture synthesis from 2d exemplars. ACM Trans. Graph.
(Proc. Siggraph ’07) 26, 3 (2007), 2.

[KHO6] KARPENKO O. A., HUGHES J. F.: SmoothS-
ketch: 3d free-form shapes from complex sketches. ACM
Trans. Graph. (Proc. Siggraph *06) 25, 3 (2006), 589—
598.

[KPHEO2] KNiss J., PREMOZE S., HANSEN C., EBERT
D.: Interactive translucent volume rendering and proce-
dural modeling. In Proc. Vis. 02 (2002), pp. 109-116.

[LC87] LORENSENW. E., CLINE H. E.: Marching cubes:
A high resolution 3d surface construction algorithm. In
Proc. Siggraph *87 (1987), pp. 163-169.

[Mer07] MERRELL P.: Example-based model synthesis.
In Proc. 13D 07 (2007), pp. 105-112.

[NISAO7] NEALEN A., IGARASHI T., SORKINE O.,
ALEXA M.: FiberMesh: designing freeform surfaces with
3d curves. ACM Trans. Graph. (Proc. Siggraph *07) 26, 3
(2007), 41.

OwWADA S., NIELSEN F., NakKAzZAwWA K.,
IGARASHI T.: A sketching interface for modeling the in-
ternal structures of 3d shapes. In Proc. Smart Graphics
(2003), pp. 49-57.

[ONOIO4] OWwWADA S., NIELSEN F., OKABE M.,
IGARASHI T.:  Volumetric illustration: designing 3d
models with internal textures. ACM Trans. Graph. (Proc.
Siggraph *04) 23, 3 (2004), 322-328.

[Pea85] PEACHEY D. R.: Solid texturing of complex sur-
faces. In Proc. Siggraph ’85 (1985), pp. 279-286.

[Per85] PERLIN K.: An image synthesizer. In Proc. Sig-
graph ’85 (1985), pp. 287-296.

[PGO6] PHAN L., GRiMM C.: Sketching reaction-
diffusion texture. In Eurographics Sketch Based Inter-
faces and Modeling workshop (SBIM) (2006), pp. 107—
114.

[POB*07] PIETRONI N., OTADUY M. A., BICKEL B.,
GANOVELLI F., GROSS M.: Texturing internal surfaces
from a few cross sections. Computer Graphics Forum
(Proc. Eurographics *07) 26, 3 (2007), 295-302.

[SIMC07] SCHWARZ M., ISENBERG T., MASON K.,
CARPENDALE S.: Modeling with rendering primitives:
an interactive non-photorealistic canvas. In Proc. NPAR
'07 (2007), pp. 15-22.

[Ske] SKETCHUP: Google
(http://sketchup.google.com/) by Google inc.

[SSPO7] SUMNER R. W., SCHMID J., PAULY M.: Em-
bedded deformation for shape manipulation. ACM Trans.
Graph. (Proc. SIGGRAPH °07) 26, 3 (2007), 80.

[SZT*07] SHI X., ZHOU K., TONG Y., DESBRUN M.,
BAO H., Guo B.: Mesh puppetry: cascading optimiza-
tion of mesh deformation with inverse kinematics. ACM
Trans. Graph. (Proc. Siggraph '07) 26, 3 (2007), 81.

[WeiO1] WEIL.-Y.: Texture Synthesis by Fixed Neighbor-
hood Searching. Ph.D. Thesis. Stanford University, 2001.

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES
J. F.: Sketch: an interface for sketching 3d scenes. In
Proc. Siggraph *96 (1996), pp. 163-170.

[ZHW*06] ZHOU K., HUANG X., WANG X., TONG Y.,
DESBRUN M., GUO B., SHUM H.-Y.: Mesh quilting for

geometric texture synthesis. ACM Trans. Graph. (Proc.
Siggraph ’06) 25, 3 (2006), 690-697.

SketchUp

submitted to EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2008)



