
PRACTICAL VOLUME GRAPHICS

実用的なボリュームグラフィックス

by

Shigeru Owada

大和田 茂

A Dissertation

博士論文

Submitted to

the Graduate School of

Information Science and Technology

the University of Tokyo

on December 16th

in Partial Fulfillment of the Requirements

for the Degree of Doctor of
Information Science and Technology







Abstract

All natural objects have volumetric structure and the structure strongly
controls the behavior of objects. Therefore, medical applications and
simulation systems have adopted volumetric data for a long time. On
the other hand, surface oriented data structure is still widely used in
films, virtual reality, and entertainment industries because of the light
processing cost and the easiness to create nonexistent models. Surfaces
are believed to be sufficient for such applications. However, in reality,
surface representation itself limits the capability of graphical systems.
This dissertation proposes systems by which the user can easily and
intuitively create and manipulate volumetric models since we believe
lack of intuitive user interface hampers frequent use of volume data for
end-user applications.

We first propose a sketch-based modeling system by which the user
can easily create shapes with holes or internal cavities, under favor of
scalar volume representation and intuitive gestural operations such as
temporary cuts. Through this work, we try to describe how beneficial
volumetric representation is, even for traditional problems.

Despite recent advances of PC ability, large data size is still an
undesired aspect of volumetric graphics for such applications as games
or virtual world construction, where memory consumption and interac-
tivity is the main concern, rather than precision or consistency of the
model. For such applications, visual effects and necessary computational
resource trades and therefore it is important to have various choices. We
propose a new pseudo-volumetric data representation that is very mem-
ory efficient and generates realistic volumetric cross-sectional images.
This system generates appropriate cross-sectional images on-the-fly, by
using 2D images as references for texture synthesis technique, controlled
by a 3D scalar volume. The data amount of 2D images is significantly
smaller than a set of voxels in 3D and the 3D scalar volume is stored
in a functional form, instead of a 3D voxel array. Therefore, this rep-
resentation is compact and suitable for practical use. In addition, since
2D images are ubiquitous, this system is convenient for easy creation of
volumetric models.

Currently, the most important source of volumetric data is the scan-
ning of real-world objects using CT (Computed Tomography) scanners,
MR (Magnetic Resonance) imaging devices or physical slicing machines.
The result is usually stored as a set of cross-sectional images, each pixel

i



of which is then called a voxel that holds the property values at a regular
3D gridpoint. To use such data for practical purposes, we usually need
to carve out the interesting region (region of interest, ROI). This carving
operation is called image segmentation and there are wide varieties of
applications such as enhanced volume rendering or intelligent user in-
terfaces. Unfortunately, image segmentation is still one of the central
topics in computer vision and no automated technique is yet available,
especially for volumetric datasets. Therefore, we almost always have
to provide additional information to obtain successful result. We pro-
pose two system to guide this task. One is a topology selection tool
for contour-based segmentation. Currently, the most robust system is
to let the user observe some of cross-sectional images and delineate the
contours manually, which causes a difficulty in finding a correct corre-
spondence between contours. We propose a system to enable to enumer-
ate all possible correspondence patterns to find the global optimum of
the shape objective function, while the user can interactively modify the
false result by simply selecting the desired pattern from the list. We also
propose a very simple user interface called volume catcher, to intuitively
and quickly perform volume segmentation. The user should only trace
the contour of the target region in the rendered image. These works
allow the novice users to utilize existing volumetric data.

We believe that volumetric graphics has huge potentials to stimulate
development of new contents. At the end of this dissertation, we show
an interactive content that potentially uses all of the above-mentioned
system as a data source. This is an interactive cooking content that
allows the user to cut foodstuff by free form strokes and a virtual knife,
using a standard mouse. This work not only shows that volume graph-
ics can produce new contents but also shows the fact that we need to
carefully design user interface to intuitively manipulate volumetric data.
Although we currently concentrate on cooking interaction, the idea of
cutting can be extended to support any kind of volumetric data.

This dissertation explores the capability of volumetric modelers,
which is indispensable in the future advance of volume graphics. It
is our hope to make volumetric graphics as popular as surface graphics
and to make it an indispensable component for any computer graphics
applications.

ii



Contents

1 Introduction 1
1.1 Generation of computer graphics . . . . . . . . . . . . . . 1
1.2 Shape model representation - Surfaces vs. Volumes . . . . 4
1.3 Volume Data Representation . . . . . . . . . . . . . . . . 6
1.4 Our contribution . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related work 11
2.1 Volume data types . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Volume data sources . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Scanning real-world objects . . . . . . . . . . . . . 13
2.2.2 Scalar volume, implicit surface modeling . . . . . . 14
2.2.3 Vector (textured) volume modeling . . . . . . . . . 15

2.3 Visualization of volumes . . . . . . . . . . . . . . . . . . . 16
2.3.1 Binary volumes . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Volume rendering . . . . . . . . . . . . . . . . . . . 16
2.3.3 Other visualization techniques . . . . . . . . . . . 18

2.4 Transfer functions . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Sketch-based modeling of scalar volumes 21
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Prior art: sketch-based modeling . . . . . . . . . . . . . . 23
3.3 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Create . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Extrusion . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Loop Extrusion . . . . . . . . . . . . . . . . . . . . 24
3.3.4 Sweep . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.5 Animation Assistance . . . . . . . . . . . . . . . . 25

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



3.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Volumetric Illustration: 2D volumetric texture synthesis
of cross-section 33
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Texture synthesis . . . . . . . . . . . . . . . . . . . 35
4.2.2 Non-photorealistic modeling and rendering . . . . 37

4.3 User interface . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1 Browsing interface . . . . . . . . . . . . . . . . . . 37
4.3.2 Modeling interface . . . . . . . . . . . . . . . . . . 38
4.3.3 Specifying a region to be filled . . . . . . . . . . . 38
4.3.4 Selecting a texture type . . . . . . . . . . . . . . . 39
4.3.5 Isotropic textures . . . . . . . . . . . . . . . . . . . 40
4.3.6 Layered textures . . . . . . . . . . . . . . . . . . . 40
4.3.7 Oriented textures . . . . . . . . . . . . . . . . . . . 42

4.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.1 Isotropic textures . . . . . . . . . . . . . . . . . . . 44
4.4.2 Layered textures . . . . . . . . . . . . . . . . . . . 44
4.4.3 Oriented textures . . . . . . . . . . . . . . . . . . . 46

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Contour-based segmentation interface 51
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.2 Outline of the proposed algorithm . . . . . . . . . 57

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.1 Initial mesh construction . . . . . . . . . . . . . . 63
5.4.2 Experimental Results . . . . . . . . . . . . . . . . 65

5.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Volume catcher: a simple user interface for volume seg-
mentation 73
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 User interface . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

iv



6.3.1 From 2D freeform stroke to 3D path . . . . . . . . 76
6.3.2 Generating constraints and segmentation . . . . . 78

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Interacting with volumes 84
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 User interface . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2.1 Implementation . . . . . . . . . . . . . . . . . . . . 90
7.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 Conclusion 95
8.1 Significance of volume graphics . . . . . . . . . . . . . . . 96
8.2 Future direction . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2.1 Modeling of explicit volume data . . . . . . . . . . 97
8.2.2 Handy scanning system . . . . . . . . . . . . . . . 97
8.2.3 Rendering capability . . . . . . . . . . . . . . . . . 98

A Improving quality of 2D distorted texture synthesis 116
A.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.2 Our algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2.1 Image as points . . . . . . . . . . . . . . . . . . . . 119
A.2.2 Registration . . . . . . . . . . . . . . . . . . . . . . 119
A.2.3 Defining overlapping region . . . . . . . . . . . . . 122
A.2.4 Fast approximate alpha shape computation with

graphics hardware . . . . . . . . . . . . . . . . . . 123
A.2.5 Graph construction . . . . . . . . . . . . . . . . . . 124
A.2.6 Merging point sets . . . . . . . . . . . . . . . . . . 126

A.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 129

v



Acknowledgements

I would like to thank a number of people and organizations who
have supported and continue to support this work.

In particular, I owe great thanks to Takeo Igarashi, my advisor at
the University of Tokyo, for providing everything necessary for this work
including precious advices, prompt feedback, encouragement, collabora-
tors and excellent research environment. I cannot be too grateful to him
because it was him who taught me how fun research is, how hopeful this
work is, and how I can carry it out, when I was about to drop out from
research community in 2002.

Besides my advisor, there has been one collaborator who is most
responsible for helping me complete this work. Frank Nielsen in Sony
Computer Science Laboratories, Inc. gave me numerous useful advices
and continuously encouraged me doing this work any time, anywhere.
He has always been extraordinarily helpful to me and it always pushed
me to do more.

I would also like to thank my lab mates for their insightful comments,
advices and other forms of help. Especially, Makoto Okabe’s very stable
CSG library is invaluable for most of my demo programs. Moreover,
Hidehiko Abe, as a TeXnician, gave me useful information for formatting
this dissertation.

My previous advisor Yoshihisa Shinagawa is the person who helped
me most when I first stepped toward research community. He also gave
me an opportunity to stay at the University of Illinois for a while. Al-
though the period was quite tough to me because of my immaturity, the
experience was really essential.

Finally, I would like to thank my parents, Hidemi and Makiko
Owada for their endless encouragement, support, and devoted love.

This work was funded in part by grants from IPA (Information-
Technology Promotion Agency, Japan) and ministry of education, cul-
ture, sports, science and technology (basic research bounty(C)(2) 16500311).



Chapter 1

Introduction

1.1 Generation of computer graphics

Since the invention of the term “Computer Graphics” by William
Fetter in 1960, computerized image creation system has shown tremen-
dous progress and nowadays computer graphics (in short, “CG”) is
widely recognized as one of the indispensable components for scientific,
industrial, educational and entertainment fields (Figure 1.1). Why is
CG so important? It is because visual information occupies a huge part
of our perceptual ability. We believe it originated from the fact that
visual sense has been crucial for survival. Actually, visual information
not only conveys the approach of danger, but also strongly affects our
mental status, thereby has a strong impact for humans.

Applications of CG technologies are countless. Scientific application
domains include medical, biological, chemical, zoological, archaeological,
astronomical or historical fields that mainly use CG for the purpose of
information visualization (Figure 1.2). Raw data obtained by captur-
ing the real-world or produced by simulation are just sets of numbers,
which cannot be understandable for the observers without appropriately
being visualized by CG. Most outstanding industrial application of CG is
computer-aided design or manufacturing (CAD/CAM) that is nowadays
a standard way of designing products such as machine parts, architec-
tures, or clothes. Educational fields recently show much interest in 3D
CG because CG can more closely represent real-world entities than static
2D pictures or illustrations. Examples of entertainment applications in-
clude movies or games, which have already produced huge profit. They
try to imitate some aspects of the real-world in entertaining manner and
represent their virtual world through 3D computer graphics. CG is also

1



(a) (b)

(c) (d)

Figure 1.1: Earliest and contemporary computer generated images. (a)
The first computer graphics by William Fetter in 1960. (b) Sketchpad:
the first interactive computer graphics system invented by Ivan Suther-
land in 1963 [135]. (c) The rendering of the result of fluid and rigid body
simulation by Carlson et al.[16] (d) Rendering with global illumination
by Tabellion et al.[136] (c) and (d) are taken from ACM Transactions
on Graphics 23(3) (Siggraph 2004 proceedings).

2



(a) (b)

(c)

(d)

Figure 1.2: Applications of CG for visualization purpose such as (a)
visualization of fluid simulation result (by Laramee et al. [84]), (b)
medical visualization (by Straka et al.[133]), (c) reverse engineering (by
Lum et al.[92]), (d) biological visualization with importance-driven en-
hancement (by Viola et al.[146]). All figures are taken from proc. IEEE
Visualization 2004.

3



useful to cut down costs of movie production process because highly re-
alistic shots can be taken by just sitting in front of a PC and operating
on sophisticated CG softwares such as Alias MAYA [2] or Softimage [3],
instead of hiring special actors, location, and huge facilities.

1.2 Shape model representation - Surfaces vs. Volumes

One of the most important purposes of computers is to model (in
other words, encode) an interesting aspect of a real-world entity, do
simulation and give back the result to again a real-world entity that is
perceivable to human. The term “simulation” does not necessarily mean
physical simulation such as finite element simulation. The simulation
method strongly depends on which real-world aspect to be modeled. For
example, the first computer ENIAC was designed to compute ballistic
trajectories. In this case, the motion of a bullet is the modelled aspect of
the real-world. Then, simulation is performed in the computer, taking
into account the initial state, gravity, and other environmental effects.
Eventually, the expected trajectory is output, which is the feedback from
the computer to the real-world. CG clearly follows this process. Material
properties that are related to the appearance of objects are modeled into
the computer. Lighting simulation is then performed using reflectance
or refraction models and the result is output to the final image through
the rendering process. In this sense, CG is the “appearance simulation”
of the real-world.

A great number of shape representations has been proposed until
today. For most CG applications, the real-world is modeled only by the
object boundary. Here the boundary forms a surface without thickness
and such models are called surface models. Currently, surface models are
widely used because they are compact, making them easy to construct,
transmit, and render. Actually, the appearance of most 3D shapes is af-
fected only by their surface properties. Therefore, surfaces are sufficient
for most static scenes. On the other hand, lack of internal information
causes several problems that are not present in real-world objects. Espe-
cially, creating dynamic and interactive scenes require internal structures
because real-world behavior is sometimes driven by (possibly invisible)
internal structures. For example, realistic animations can be generated
only by simulation that requires fairly “realistic” representation of ob-
jects, say, volumetric data. More simply, if the model is split by cut
operations in an interactive application, appropriate cross-sectional im-

4



ages should appear which is not possible with surface representations.
Even if the scene is static, it is difficult to render translucent objects.1

Another problem is self intersection. Self intersection is the situation
that front faces and back faces go converse, which never happens in the
real-world. This causes various problems such as inability to perform
CSG operations [64].

Volumetric representations have complementary advantages and lim-
itations. Since a volumetric representation stores internal information, it
is straightforward to cut a model and observe the cross-sections. This is
also suitable for generating realistic animations since simulation can also
be performed for volume data. On the other hand, the amount of data
generally far exceeds that of a surface representation, making storage,
transmission, modeling, and rendering much more difficult. Modeling
is especially problematic, although the other problems can eventually
be mitigated by more memory, faster processors, and networks. We be-
lieve that this is the main reason why volume graphics is not so popular
despite of the benefits. Since modeling problems are closely related to
the limitations of human perception and manipulation, the design of
appropriate user interfaces plays a critical role in addressing them.

Currently, the main sources of volume data are the capture and sim-
ulation. Since the invention of CT (Computed Tomography) scanners
in 1973 [67], large-scale volume data became available. MRI (Magnetic
Resonance Imaging) devices also generate volumetric data. These are
called noninvasive capture devices and are now indispensable for med-
ical diagnosis. Simulation is another source of volume data. Since the
real-world is 3D, simulation is frequently performed in 3D, producing a
3D dataset as a result. These two data sources are actually the most
standard and form mainstreams of volume graphics. However, the users
of CG are not limited to medical doctors and academic/industrial re-
searchers. As we mentioned before, such domains as educational or
entertainment field are huge markets of CG and they have potential to
benefit from volumetric graphics. Although Jim Kajiya’s prevision in
1991 has been proven to be wrong2, we still believe that there are a
huge amount of unexplored benefit of volume graphics and the current

1If opacity of inside of an object is constant, the rendering can be precisely per-
formed by processing only the surface. This computation can be performed on pixel
shaders on contemporary graphics engines [38].

2T. Elvins’s survey paper [34] cites the Jim Kajiya’s words at Siggraph 91 “... in
10 years, all rendering will be volume rendering.”

5



bottleneck lie in the fact that there are very few practical methods to
create and manipulate volumetric data. In other words, the current user
interface for volume graphics is amazingly poor. Our mission is to let
all CG programmers benefit from volume graphics, even if they do not
have specialized skills or devices to obtain and manipulate volumetric
data that fit their requirement.

Unfortunately, this mission is not fully completed in this disserta-
tion. However, we propose several interaction ideas that potentially
make volume graphics tractable for end users- some of which are related
to processing existing volume data and the others produces volumetric
data from scratch.

1.3 Volume Data Representation

There are various types of volume data. In symbolic form, volume
data is represented as a function V (x, y, z), where (x, y, z) is a coordinate
value. For example, if Vb(x, y, z) ∈ {0, 1}, Vb is called a binary volume.
If Vs(x, y, z) returns a single real number, Vs is called a scalar volume.

One important subset of scalar volume is an implicit function. Im-
plicit function is developed in the context of surface modeling (See sec-
tion 2.2.2). It usually consists of integral of weighted kernel functions
and the surface is defined as the solution set of Vs(x, y, z) = c, where c is
a user-defined threshold value (in most cases, c = 0). Usually, scalar vol-
umes store auxiliary information of surface data. For example, distance
field is an scalar volume that returns the closest distance to a surface.
The distance field is easily computed from a surface model (unless the
surface does not contain self intersection) and used to effectively find
a central axis of the shape [5] or to provide an intuitive user interface
[39]. Later we show an application of an scalar volume to a sketch-based
modeling system, avoiding several problems seen in surface-oriented sys-
tems.

The function may also return a vector value. For example, the vol-
ume can return a tuple of three floating values, each of which contains
the intensity of a color channel : Vc(x, y, z) ∈ (r, g, b) where r, g, b ∈ [0, 1].
Then Vc is a textured volume or colored volume, which is a subset of more
general vector volumes. Textured volumes are usually difficult to create
since they usually contain detailed textures that are not necessarily re-
lated to the large-scale structure of the region. Some existing systems
try to solve this by using a procedural approach that lets the user to di-

6



rectly program a volumetric modeling function using a specially designed
language [111], possibly using help of an scalar volume [23]. However,
previous systems are not user-friendly because a specialized skill is re-
quired to map desired geometric texture to a language code. In addition,
it is not possible to generate highly detailed and unstructured textures
using this interface. Another approach is the use of a reference volume
and its seamless extension, which is mainly applied to video synthesis
[80, 82, 131]. The drawback of this system is obviously the necessity of
the reference volume. From the designer’s point of view, this approach
does not solve the essential problem because it ignores the most difficult
part, the reference volume creation. There are some systems that tries
to generate volume data from 2D cross-section [55, 148, 69]. However,
none of them achieved both stability and flexibility at the same time.

Recently, a new kind of data called “Time-varying data” or “4-
D volume” became accessible. This data take an additional variable t

(time) as the input. Therefore, time-varying volume data is represented
as Vt(x, y, z, t). This form of data become more and more important for
medical diagnosis of dynamic organs such as a heart. However, handing
this data is beyond the scope of this dissertation.

1.4 Our contribution

In this dissertation, we propose several tools that make volume
graphics tractable for end users. We mainly concentrate on modeling
volumetric data, since we believe difficulty of modeling is the main ob-
stacle for popularization of volume graphics. The overhead view of vol-
ume graphics and the position of this dissertation is shown in Figure
1.3. As in the figure, we focus mainly on user interface aspect of volume
graphics. In Chapter 3 and 4, we propose two systems that manually
create volumetric models from scratch. In Chapter 5 and 6, we propose
two more systems that support segmentation of scanned or simulated
volume data, represented as a set of voxels. The 3D model generated
by any of these systems can be used for interaction system proposed in
Chapter 7. We will explain each in detail.

In Chapter 3, we propose a sketch-based modeling system that can
easily handle topological change, under the favor of intuitive user in-
terface and the underlying scalar volume representation. Sketch-based
modeling is a common technique for quick creation of rough 3D shapes.
Since existing systems use surfaces as the primary shape representation,

7



Volume Modeling

Visualization Volume rendering

Surface rendering


(isosurface,segmented data)

User interface


(Cut, deformation)

Chapter 7

Manual editing


user interface
Capturing Simulation

User interface for


auxiliary information

Surface extraction

Segmentation

Transfer function

Chapter 3,4

Chapter 5,6

Data generation

Processing

This dissertation

Figure 1.3: The domain of this dissertation in the context of volume
graphics

implementing such systems was rather difficult (especially, implement-
ing the CSG routine is difficult [64]) and the output can self-intersect,
depending on the operations performed. The use of scalar volume repre-
sentation is the most natural way to solve such problems. Through this
work, we tried to show how we can easily and effectively benefit from
volumetric shape representation.

In Chapter 4, we propose a system through which the user can easily
create volumetric models using 2D example images. Here we introduce
a new data representation that is a hybrid of 2D images (as an approx-
imation of textured volume) and the control information in an scalar
volume form. This representation is specifically designed for generating
volumetric cross-section. If the user cuts the model, the 2D images is
processed using an extension of pixel-based texture synthesis technique
[149] to generate an appropriate target cross-sectional image. Since the
data source is 2D images, it is easy to find and therefore suitable for
end-user design. This is also extremely memory efficient compared to
actually creating 3D textured volume.

In Chapter 5, we propose a topology enumerator and interactive
selector, which enhances existing contour-based segmentation systems.
Currently, the most robust volume segmentation system is to let the user
observe each cross-sectional image and delineate the contours manually
(possibly with the help of 2D image segmentation algorithms). But this

8



is extremely labor intensive and it is not realistic to ask the user to do
this task for all slices. We rather ask the user to work on a few number
of slices, resulting in a sparse set of parallel contours. Here a difficult
problem arises: how can we interpolate these contours? This problem
is rather traditional and a great number of approaches have already
been proposed. The difficulty lies especially in the topology between
contours, since once the topology is determined, spanning the smooth
interpolating patch is easy by using well-known techniques such as thin-
plate interpolation or a subdivision surface. Most existing techniques
uniquely determine the topology from purely geometric relationship of
contours, which may not be correct in general case, especially when
slice interval becomes larger. We propose an algorithm to enumerate
all possible bifurcation patterns to find the global optimal topology and
corresponding user interface to modify the false result interactively.

In Chapter 6, we propose a simple user interface to segment tradi-
tional volume data. The most common volumetric data available today
is in the form of regular voxels, which is essentially a set of 2D im-
ages across the 3D space. Although we have volume rendering hardware
for such data readily available nowadays, it still requires much higher
machine specification than that of surface graphics. For example, vol-
ume rendering is not desirable for most applications that work in multi
tasking environment or in time critical systems. If the volume data is
segmented and does not contain translucent voxels, the data is rendered
by its boundary, say, surface models, and the volumetric aspect appears
only when the model is cut, which can be performed on the main mem-
ory. In this sense, volume segmentation algorithm is a method to convert
volumetric representation into surface models. However, the user inter-
face for traditional volume segmentation task requires fair amount of
interaction. We propose a very simple method: the user only need to
trace the contour of the desired region in the rendered image. This inter-
action is significantly easier than any existing methods and we believe
that this work makes existing volumetric data tractable even for end
users.

In Chapter 7, we propose an interactive content that uses a volu-
metric user interface. In this Chapter, we show a cooking content, by
which the user can interactively cut, peel, and deform volumetric models
using free form strokes and a knife tool, controlled by a standard mouse.
We tried to show that the volume technology has large potentials to

9



produce various interesting contents and also volume graphics require
an effective and intuitive use interface.

Chapter 8 concludes the dissertation. This chapter summarizes the
entire work and we discuss the current problems and future direction of
volumetric computer graphics.

In this dissertation, we propose several tools that make volume
graphics tractable for end users. We mainly concentrate on modeling
user interface and corresponding techniques of volumetric data, since we
believe difficulty in modeling volume data is the main obstacle for popu-
larization of volume graphics. One limitation is that we do not propose
a method to author textured volume data from scratch. This hampers
our models to be used for volumetric simulation such as finite element
simulation. However, we believe such simulation is only one of possible
application of volume graphics and we can still benefit from volumetric
representation such as scalar volumes (Chapter 3) and volumetric illus-
tration (Chapter 4). It is our future work to author textured volume
data from scratch, using sophisticated user interface.

10



Chapter 2

Related work

According to Arie Kaufman, “Volume graphics, which is an emerging
subfield of computer graphics, is concerned with the synthesis, model-
ing, manipulation, and rendering of volumetric geometric objects, stored
in a volume buffer of voxels [74].” This is fair but we consider volume
graphics in more generic sense, including implicit function volumes or
procedural volumes, which are not necessarily stored in voxels. Volume
graphics is the most intensively explored in the context of medical diag-
nosis and scientific simulation. Medical doctors require volume graphics
because medical devices such as CT or MR scanners are huge producers
of volume data and effective visualization is crucial for their diagnos-
tic task. Scientific simulation is another rich source of volume data
since real-world is 3D and they need volume graphics to understand the
real-world and the simulation result. However, the application area of
volume graphics is not limited to those two. For example, entertainment
industry also uses volumetric simulation in simplified form to represent
amorphous phenomena such as clouds, fire, and smoke, which do not
have distinct surfaces. In this chapter, we overview the history and
current situation of volume graphics.

2.1 Volume data types

There are several ways to represent volume data, depending on the
purpose or the property of data source.

The most rough classification of volume data is two-hold: a set of
voxels (discrete sample points) and a continuous function form. Vox-
els are directly obtained from scanning real-world objects or simulation.
Since these data sources are predominate, this form of data is the most

11



commonly used. A drawback of this representation is that it tend to
require larger amount of memory for meaningful data. Large amount
of data causes difficulty not only in storing and processing, but also
in manual generation and transformation. Another drawback is that
interpolation is necessary for various processing such as rendering or
generation of arbitrary cross-sectional images. Function form volumes
are less commonly used but from the point of view of generating volume
data manually, this is virtually the only tractable and practical repre-
sentation. This is mainly used for modeling amorphous phenomena or
other organic textures such as marbles or tree rings [111, 23]. The ad-
vantage of this representation is that it is compact and continuous. On
the other hand, the user has to define spatial distribution by function
programing where the user interface cannot be very intuitive and the
variety of possible textures is limited.

Voxels can be aligned either regularly or irregularly. Regularly
aligned voxels is most commonly used and most volume rendering hard-
wares (eg. VolumePro [112], NVidia GeForce series) only support this
form of data. Since this is a natural extension of 2D images into 3D, a
great number of 2D imaging algorithms such as compression or segmen-
tation, are directly applicable to voxels. A common source of irregular
set of voxels is the finite element meshing for simulation. Irregular vox-
els can be stored either as an independent set of points or tetrahedron.
Although this type of data holds flexibility in representing arbitrary lay-
out of sample points, it is more difficult to visualize than regular voxels
because determining the correct visibility is not straightforward.

2.2 Volume data sources

Currently, the source of volume data is limited. It is a clear differ-
ence from surface graphics since there are a great number of 3D shape
modelers designed for surface graphics both in commercial and research
levels [2, 3, 157, 68]. To obtain volume data, we need to have access to
special scanning device or generate the data through simulation or pro-
gram the texture by a scripting language. Scanning is easier and more
typical method but such input devices are usually extremely costly. On
the other hand, most manual creation methods do not require special
input device but the user interface is usually not very sophisticated and
the variety of resulting data is limited. We believe this poor variety of
data sources narrows the application domain of volume graphics.

12



2.2.1 Scanning real-world objects

Currently, the main source of volumetric data is the scanning of
real-world objects. Scanning is often performed in the fields of medical
or biological research. The existing scanning devices can be categorized
into two types: non-invasive and invasive ones.

Non-invasive methods Non-invasive devices capture 3D volume
without destroying the subject. The most common such devices are
CT (Computed Tomography) and MR (Magnetic Resonance) scanners.
CT scanner has been recognized as one of indispensable devices in such
fields as medical, biological and engineering. This device is based on the
theory of projection/back-projection which was discovered by J. Radon
in 1917 [120]. This theory is called Radon and inverse Radon transfor-
mation. The first X-ray CT scanner is invented by Hounsfield in 1973
[66]. He received Nobel Prize for this achievement. MR scanners also
non-invasively explore inside of subjects. However, in contrast to CT
scanners, MR scanners use magnetic field. The principle for this de-
vice was found in 1946 by Broch et al. and Purcell et al, independently
[13, 119]. They were also awarded the Nobel Prize in 1952. Lauterbur
could generate MR image in 1973 [85] and in mid 1980s, MR scanners
began to widespread. MR scanners have several differences from X-ray
CT scanners. First, MR scanners do not cause X-ray bombing. Second,
the spatial resolution of MR scanners is usually less than that of CT
scanners. MR imaging is appropriate to detect hydrogen (say, water)
while X-ray is good for heavy atoms such as calcium.

Invasive methods The principle of invasive methods is simple:
the observer actually cuts the subject and takes pictures of the cross-
section. The benefit of this method over non-invasive methods is that
this can directly capture visual property (color and opacity) of the cross-
section. In addition, other properties such as stiffness or humidity can
be captured because the subject is actually opened up and arbitrary
processing is possible on the cross-section. On the other hand, obvious
drawback is that this is invasive. The subject is irreversibly destroyed
and the original shape cannot be recovered in most cases. Therefore, it
is impossible to capture living subject as it is.

A good example data that is captured invasively is Visible Human
Dataset [10]. Dead bodies are physically sliced at 1

3 to 1 millimeter in-
tervals. This dataset is obtained by NLM (National Library of Medicine,
USA).

13



Although Visuble Human Project developed a special slicing device, a
most popular slicing device is called a microtome which can cut only
small objects. On the other hand, there are some groups that develop
microtomes for mid-sized objects [105].

2.2.2 Scalar volume, implicit surface modeling

Scalar volumes return a scalar value for each spatial point (See sec-
tion 1.3). If the spatial function Vs(x, y, z) is interpreted to define a
surface which is extracted as the solution set of Vs(x, y, z) = c where c is
a constant value, the function Vs is called an implicit function and the
corresponding surface is called an implicit surface.

Implicit surface modeling has more than 20 years of history [106].
The pioneer to introduce implicit surfaces is Blinn [12]. Earlier systems
represent the implicit function by a set of points that span a spherical
profile (the field value is determined only by the distance from the center
of the kernel: radial basis function) [46, 155], while later systems employ
more sophisticated primitives such as integration of kernel function along
a line or a part of a surface [14, 6].

Implicit modeling has several advantages. One is that if the ker-
nel function is smooth, the smoothness of the surface is automatically
guaranteed, making it convenient for creating smooth, organic shape.
Another benefit is that the user has no need to care about the topolog-
ical change explicitly. This is because of its volumetric nature and this
is the main aspect we focus on in Chapter 3.

One drawback is the difficulty to visualize the surface. There are
mainly two ways to do this: direct rendering and polygonization. Direct
rendering method casts rays from the viewpoint to the scene, looking
for a intersection to the target surface and sample the normal vector
at each location. This is appropriate to achieve precise visualization of
the surface in the sense that the resolution of sampling implicit function
is aligned to the screen resolution [12, 46]. There is a good review of
this technique in [52]. The main drawback of this technique is that it is
almost impossible to achieve interactive frame rate.
More commonly used technique is the surface extraction. It is not
straightforward because there is a gap between continuous implicit func-
tion and discrete (piecewise linear) mesh representation. The most pop-
ular polygonization algorithm is the Marching Cubes method, which
samples the space regularly and locally fit a triangular mesh [90]. Im-

14



plementing this method is fairly easy but there are some drawbacks such
as computational complexity and loosing topological consistency. Some
other techniques do not have such problems [153, 25].

2.2.3 Vector (textured) volume modeling

Vector volumes are defined to be a spatial function Vv(x, y, z) that
returns more than one scalar values. The most important subclass of this
type of volume data is a textured (or colored) volume, which returns the
intensity of a tuple of three or four scalar values that represent red, green,
and blue channels (optionally with an opacity channel), respectively.
Textured volume modeling is much more difficult than scalar volume
modeling because the texture that should be modeled has fine structures
that usually has no (or little) connection to the geometric feature of the
object. There are few methods proposed in research domain but only
procedural methods are used in practical. Unfortunately, procedural
methods lack flexibility and intuitive user interface, which we think is
the biggest limitation.

Procedural Procedural methods enable the user to design vari-
ous 3D structures using specially designed scripting language [111, 77].
This method is also called solid texturing and widely used for modeling
3D texture such as marble, clouds, and fire. The key feature of this
technique is the use of multi-scale noise function called “Perlin noise
function”, which generates natural structural texture efficiently. Cutler
et al. also proposed a scripting language for volumetric modeling [23].
However, it is difficult for most people to obtain desired textures by
programming or adjusting parameters.

Special input devices There are systems that use 3D pointing
devices to create 3D textures [43, 37, 94]. However, they are designed
mainly to convey the overall shape of a model and it is still difficult to
design the detailed internal textures of 3D volumes. Another drawback
is that such input devices are usually expensive, compared to standard
devices such as mice.

2D texture examples to 3D Usage of 2D images is one solution
for explicit volume modeling. This approach has potential to offer a nice
user interface because 2D images are very much easier to obtain than 3D
example volumes. Heeger et al.[55] and Dischler et al.[26] tried to analyze
an original texture sample using frequency decomposition and applied
the information to generate 3D texture. These techniques work only

15



for isotropic, noisy textures. Wei extended the pixel-based 2D texture
synthesis method to generate 3D textures [148]. This work returns much
better result than frequency-based method but still is not sufficient for
practical use. Jagnow et al. recently proposed a stereological technique
to generate high quality 3D texture from 2D sample image [69]. However,
[69] can only handle isotropic textures that consist of set of elements and
to make matters worse, the shapes of elements should be predefined.

Other techniques Wang et al. and Mizuno et al. proposed a
carving technique to author 3D shape with textures [147, 96]. Their
system focuses on mimicking a carving process, rather than actively
constructing 3D texture.

2.3 Visualization of volumes

The history of volume graphics had almost been identical to the
history of volume visualization, because comprehension of volume data
is the most primary and important interaction but is not as easy as
expected.

2.3.1 Binary volumes

The simplest method is to convert general volume data into binary
form by setting a threshold value and then render each opaque voxels by
six quadrangular faces [58]. This method is later improved by isosurface
extraction of the volume, which is related to the polygonization of im-
plicit surfaces (Section 2.2.2). The notion of isosurface is later extended
as the limit of an interval volume [41]. The isosurface of binary volume
usually becomes jaggy but the effect is mitigated by computing the sur-
face normal from the gradient of the original volume data [62]. Binary
volumes are also produced by hard segmentation of volumes (Section
2.5).

2.3.2 Volume rendering

Volume rendering, which is now a standard way to visualize vol-
ume data, directly uses each voxel’s nonbinary opacity. A number of
algorithms are proposed.

Ray casting Ray casting algorithm casts rays and integrate illu-
mination values along the rays [70, 86]. Drebin et al. used fuzzy clas-
sification of voxels for coloring the target volume [27]. This work has

16



a great impact and is considered to be a pioneer of volume rendering
technique. Cube-4 is a special-purpose volume rendering hardware that
renders 10243 voxels at 30 frames per second, using variant of ray cast-
ing algorithm [113]. This technique is extended to a commercial system
called VolumePro [112].

Splatting Splatting is an algorithm to map point primitives to im-
age plane [152]. The shape and the size of the mapped primitive is
approximated and displayed as a translucent blob. This is a forward
mapping technique, which is different from standard ray casting algo-
rithm where the access to the volume data is aligned by pixel locations
in the final image. Forward mapping is usually faster than backward
mapping since the access to the original data is more cache coherent.
Recent work achieve faster and higher quality result with GPU (graph-
ics processing unit) computation using extension of splatting [17]

Shear-warp / 3D texturing Shear-warp factorization is another
forward-mapping technique [81]. Instead of point primitives, shear-warp
factorization essentially uses texture mapping and can be efficiently im-
plemented by standard texture mapping hardware. Despite its easiness
for implementation and fast rendering speed, shear-warp factorization
has several drawbacks: resampling is performed only within the slices
(therefore the interpolation is bilinear, instead of trilinear) and also sam-
pling rates are affected by viewing angles, both cause significant degra-
dation of the rendered image quality. Although these drawbacks are
mitigated by careful implementation using the multi-texturing and the
multi-stage rasterization facility [122], more direct and fast volume ren-
dering using a contemporary consumer level graphics hardware unit is
3D texturing [44, 100]. Rendering quality is further enhanced by adopt-
ing GPU functionalities [79].

Evaluation in 2000 shows splatting produces quality result compa-
rable to ray casting and shear-warp/3D texturing are fast but the image
quality is low [101].

Non-photorealistic rendering Yet another emerging volume ren-
dering technique is non-photorealistic volume rendering. Non-photorealistic
rendering (in other words, expressive rendering) arose from the context
of simulation of traditional media and human drawing [134, 47]. The
significance of computerized non-photorealistic rendering is not just im-
itating real-world media, but efficiently conveying visual information
by intentional emphasis and suppression, rather than pursuing realism

17



[45, 124]. For volume rendering, a variety of methods are already pro-
posed such as silhouette enhancement [28, 117], pen-and-ink style ren-
dering [140], and stippling [91]. Importance driven volume rendering
also falls into this category, where the designer specifies the region of
interest and the information affects the final rendering [146].

2.3.3 Other visualization techniques

Another primary method is the simulation of x-ray imaging, that is,
parallel rays are cast to the volume, averaging the intensities along the
ray [51]. MIP (Maximum Intensity Projection) is yet another visualiza-
tion method, which just takes the largest value along the cast ray. Since
it is easy to achieve interactive frame rate using MIP, this technique is
still widely used and actively explored [54, 97]. 3D magic lenses is a
technique to locally control rendering parameters in the 3D space [145].
Magic mirrors proposes a multimodal rendering environment where the
user can browse target object in multiple styles while maintaining visual
coherency by using the metaphor of mirrors [78].

Visualization of arbitrary (curved) cross-section is an important
technique to precisely observe an aspect of volumetric object. Earlier
systems just display planar and axis-aligned cross-sections. Some recent
works try to generate special cross-sections that most clearly represent
the structure of volume data [72]. Interactive browsing with cutting and
deformation is another novel and promising approach [95].

2.4 Transfer functions

Volume classification, which splits raw data into two or more se-
mantic regions, plays a crucial role in making information clearly visible
to the viewer. The most important and frequently used volume classifi-
cation tool is the transfer functions [114]. They map raw volume data
(usually grayscale) to color and opacity values (in our terminology, map-
ping from scalar to textured volumes, or, possibly textured to textured
volumes). The spirit is essentially the same as the image segmentation,
which will be discussed in detail in the next section. The key differ-
ence from image segmentation is that the target volume data scarcely
contain color channels. Compared to sophisticated image segmentation
algorithms, setting transfer functions looks rather simplistic. In reality,
identifying a good transfer function proves difficult. Actually, this is

18



counted as one of 10 unsolved problems in computer graphics by Pat
Hanrahan in 1992 [114]. The reason is that voxels are frequently oc-
cluded by other voxels and also the region of interest (ROI) may not
hold distinct features. Because of the importance in volume visualiza-
tion, there are great number of approaches are already proposed and
tested.

Traditionally, transfer function directly maps the original voxel val-
ues to color and opacity values [27]. He et al. proposed a system that
directly walks through the parameter space. They used a stochastic
technique (such as hill-climbing or simulated annealing) to generate pa-
rameter values, driven by a predefined or user-specified objective func-
tion. Marks et al. proposed the Design Galleries system, which allows
the user to interactively select general rendering parameter space with
the help of pre-rendered thumbnail images [93].

The above-mentioned 1D histogram clustering has a limited prefor-
mance since location and texture are not well considered. Bajaj et al.
proposed a system called Contour spectrum that displays the surface
area, volume, and gradient integral as functions of scalar voxel values
and allows the user to select a desired isovalue [9]. Kniss et al. take
gradient and second directional derivative of the original voxels and use
them as input of the transfer function [76]. Since increase of the dimen-
sion of transfer function causes complication of user interface, [76] also
introduced the sophisticated user interface called direct manipulation
widgets. Fujishiro et al. and Takahashi et al. presented a distinctive
system to analyze topological structure of volume data and reflect the
information to manually or automatically define the transfer function
[42, 137].

2.5 Segmentation

Image segmentation is the task of extracting regions corresponding
to perceptually distinct regions. This is a fundamental topic in vision
that has received a lot of attention and been intensively explored in the
2D domain. A large number of different approaches have been proposed,
such as thresholding, k-means clustering, deformable models, watershed
segmentation, graphcut algorithms, level-set methods, and the Hough
transform, all of which can be applied to 3D voxels with no or slight
modification. We will not give an overview of all existing methods here.
Instead, we explain a few promising approaches. The most common

19



algorithms optimize graph partitions of weighted neighborhood graphs
[156, 36, 127]. Solving these graph partitioning problems can either
be done locally by fast greedy decision heuristics [36, 103], or globally
by computing decompositions [156, 127] of matrices induced from these
graphs. Segmentation algorithms designed primarily for 2D data are
often applicable to 3D with little or no modification.

Unfortunately, completely automatic image segmentation algorithm
cannot exist because segmentation is dependent on semantic interpreta-
tion of image, which is very difficult to emulate by computer. There-
fore, recent systems seek to incorporate human control into segmentation
task. Examples of such systems for 2D imaging are the Lazy Snapping
system [87] or the Crayons system [35]. On the other hand, it is espe-
cially difficult to control 3D segmentation because typical input device
is a 2D mouse. The most reliable method is to isolate a slice of the vol-
ume and manually specify the contour of the ROI [53]. This information
is then propagated to adjacent slices using a region growing technique.
Alternatively, the user may place seed points for region growing on the
cross-sectional plane [126]. These techniques require fair amount of user
interaction. Setting transfer functions is indirect from the viewpoint of
user interaction [114]. Tzeng et al. recently presented a user interface
for providing high level classification information through roughly draw-
ing freeform strokes on a cross-sectional plane [144]. The user cuts the
data perpendicular to each axis and specifies foreground and background
regions using a painting tool. By observing the gradient, location, and
neighbouring voxel values, as well as the voxel value itself, this system
captures local texture and positional information of a voxel. Nock and
Nielsen describe a fast and provably good region-merging algorithm [104]
based on statistical analysis of regions. Their method easily generalizes
[103] to incorporate user-defined constraints and is directly applicable
to 3D.

20



Chapter 3

Sketch-based modeling of scalar

volumes

Figure 3.1: Examples created by our system

This chapter presents a sketch-based modeling system for creat-
ing objects that have internal structures. Using hand-drawn sketches
and gestural operations, the system automatically generates a volumet-
ric model. The underlying volumetric representation solves any self-
intersection problems and enables the creation of models with a variety
of topological structures, such as a torus or a hollow sphere. To specify
internal structures, our system allows the user to cut the model tem-
porarily and apply modeling operations to the exposed face. In addition,
the user can draw multiple contours in the Create or Sweep stages. Our
system also allows automatic rotation of the model so that the user does
not need to perform frequent manual rotations. Our system is much
simpler to implement than a surface-oriented system because no com-
plicated mesh editing code is required. We observed that novice users
could quickly create a variety of objects using our system.

21



3.1 Background

Geometric modeling has been a major research area in computer
graphics. While there has been much progress in rendering 3D models,
creating 3D objects is still a challenging task. Recently, attention has fo-
cused on sketch-based modeling systems with which the user can quickly
create 3D models using simple freehand strokes rather than by specifying
precise parameters for geometric objects, such as spline curves, NURBS
patches, and so forth [157, 68]. However, these systems are primarily de-
signed for specifying the external appearance of 3D shapes, and it is still
difficult to design freeform models with internal structures, such as in-
ternal organs. Specifically, the existing sketch-based freeform modeling
system [68] can handle 3D models only with spherical topology. This
paper introduces a modeling system that can design 3D models with
complex internal structures, while maintaining the ease of use of exist-
ing sketch-based freeform modelers. We used a volumetric data structure
to handle the dynamically changing topology efficiently. The volumet-
ric model is converted to a polygonal surface and is displayed using a
non-photorealistic rendering technique to facilitate creative exploration.
Unlike previous systems [68], our system allows the user to draw nested
contours to design models with internal structures. In addition, the user
can cut the model temporarily and apply modeling operations to the
exposed face to design internal structures. The underlying volumetric
representation simplifies the implementation of such functions. More-
over, our system actively assists the user by automatically rotating the
model when necessary.

The heart of our technique is automatic “guessing” of 3D geometry
from 2D gestural input, and it is done by making certain assumptions
about the target geometry. To be specific, the system assumes that the
target geometry has a rotund, smooth (low curvature) surface [68] other
than the places where the user explicitly defined the geometry by the
input strokes. In other words, the user specifies the information about
important features (silhouette, intersection, and sweep path) and the
system supplies missing information based on the above assumption.

Our system is designed to facilitate the communication of compli-
cated geometric information, such as surgical plans. Like other sketch-
based modeling systems, however, our system is not suitable for creating
the final output of any serious production, because of its lack of accuracy.

22



3.2 Prior art: sketch-based modeling

Sketch-based modeling using standard mouse operations became
popular in the past decade. Instead of creating precise, large-scale
objects, a sketching interface provides an easy way to create a rough
model to convey the user’s idea quickly. One of the earliest sketching
systems was Viking [118], which was designed in the context of proto-
typic CAD models. Later works include SKETCH [157] and Teddy [68].
The SKETCH system is intended to sketch a scene consisting of simple
primitives, such as boxes and cones, while the Teddy system is designed
to create rotund objects with spherical topology. Although improve-
ments to the original Teddy system is proposed later [73], extending the
topological variety of creatable models is still an unsolved problem.

3.3 User Interface

The entire editing operation is performed in a single window. Mod-
eling operations are specified by freeform strokes drawn on the screen
and by pressing buttons on a menu bar. The freeform strokes provide
necessary geometric information and the buttons apply specific modeling
operations using the strokes as input. The drawing of strokes is assigned
to the left mouse button and rotating the model is assigned to the right
mouse button. The current implementation uses four buttons, as shown
in Figure 3.2. The leftmost button is used to initialize the current scene;
the second one is to create items; the third is for the extrusion/sweep
function; and the last is for undo.

Figure 3.2: Buttons in our system

3.3.1 Create

Objects are created by drawing one or more contours on the canvas
and pressing the “Create” button. This operation inflates the interme-
diate region between the strokes leaving holes (Figure 3.3).

23



Figure 3.3: Nested contours are allowed in the Create operation.

3.3.2 Extrusion

Extrusion is an operation that generates a protuberance or a dent
on a model. The user draws a single closed stroke on the object’s sur-
face specifying the contour (Figure 3.4 (b)) and presses the “Extru-
sion/sweep” button. After rotating the model (Figure 3.4 (c)), the user
draws a second stroke specifying the silhouette of the extruded area (Fig-
ure 3.4 (d, f)). The user should place each end of the silhouette stroke
close to each end of the projected surface contour (otherwise the second
stroke is interpreted as a sweep path; see Section 3.4.) A protuberance is
created if the second stroke is drawn on the outside of the object (Figure
3.4 (d,e)). The user can also create a hole by drawing a stroke into the
object (Figure 3.4 (f,g)). Volumetric representation automatically pre-
vents self-intersection problems, where specialized care must be taken
when using a polygonal representation. A hidden silhouette is rendered
as broken lines.

3.3.3 Loop Extrusion

In addition, it is also possible to create a hollow object using ex-
trusion. To do this, the user first cuts the model to expose the internal
region (Figure 3.5 (a-c)), then draws a contour on the exposed plane
(Figure 3.5 (d)), and finally draws a circular stroke that entirely sur-
rounds the contour (Figure 3.5 (e)). We call this operation “Loop Ex-
trusion”. The cutting operation that we use differs from the standard
Cut operation in the Teddy system [68] in that the removed region is just
deactivated temporarily. The system distinguishes these two operations
by checking whether there is a corner at the end of a stroke. The system
performs a standard cutting operation when there is no corner, while
the system deactivates a region when there is a corner. The direction

24



(a) (b) (c) (d)

(e) (f) (g)

Figure 3.4: Examples of Extrusion

of the stroke end is used to determine which area to deactivate. The
silhouette of the deactivated parts is rendered as broken lines.

Deactivation is provided in order to make the inside of an object ac-
cessible. The user can draw a contour and have it extrude on an internal
surface in exactly the same way as done on an external surface (Figure
3.6). The following sweep operation can also be used in conjunction with
deactivation.

3.3.4 Sweep

After pressing the “Extrusion/Sweep” button, the user can also draw
an open stroke specifying the sweep path. If a single contour is drawn in
the first step, both ends are checked to determine whether they are close
to the projected contour. Unlike extrusion, the user can draw multiple
contours to design tube-like shapes (Figure 3.7).

3.3.5 Animation Assistance

In extrusion or sweep, the model must be rotated approximately 90
degrees after pressing the “Extrusion/Sweep” button to draw the last
stroke. To automate this process, our system rotates the model after

25



(a) (b) (c)

(d) (e) (f)

Figure 3.5: An example of creating a hollow object: first, the user defines
the desired cross-sectional plane by deactivating part of the object (a-c).
Then, the user draws a contour on the cut plane (d). Finally, the user
draws a extruding shape surrounding the contour, which we call “Loop
Extrusion” (e). This creates a hollow object (f).

(a) (b) (c)

Figure 3.6: A extrusion from an internal surface of an object using
deactivation

the “Extrusion/Sweep” button is pressed; the contours are then moved
so that they are perpendicular to the screen (Figure 3.8 (a-c)). This
animation assistance is also performed after a Cut operation, because it
is likely that a contour will be drawn on the cut plane in the next step.
When a model is cut, it is automatically rotated so that the cut plane
is parallel to the screen (Figure 3.8 (d-f)).

26



(a) (b) (c)

Figure 3.7: Sweeping double contours: drawing contours on the surface
of an object (a) and sweeping them (b) produces a tube (c).

3.4 Implementation

We use a standard binary volumetric representation. The examples
shown in this paper require approximately 4003 voxels. The volumetric
data are polygonized using the Marching Cubes algorithm [90]. The
polygonized surface is then smoothed [139] and displayed using a non-
photorealistic rendering technique [83]. The silhouette lines of invisible
or deactivated parts are rendered as broken lines.

The Create operation is different from that of the original Teddy
system [68]. Basically, the algorithm approximates the user-drawn closed
stroke by a set of circles. Then each circle is converted to a ball (Figure
3.9).

It is performed by first finding the medial axis of the user-drawn
stroke. The approximated medial axis is computed by taking ridge lines
in the signed distance field of the input stroke, which is efficiently com-
puted by the vector distance transformation [98]. This process is equal
to finding the approximating set of circles because the centers of the
circles lie on the medial axis and the distance values on the medial axis
represent the radius of the circles.

Conversion to 3D balls is again efficiently performed by slightly mod-
ifying the 3D vector distance transformation algorithm [98]. The original
algorithm sets the input surface locations as distance 0 constraints. In-
stead, we set centers of balls as nonzero distance constraints. We locate
the 2D medial axis (with distances) into 3D space as constraints and
then perform the 3D vector distance transformation. The zero set of the
resulting volume is the output surface.

The shape tend to be more round than the original algorithm pro-
posed in the Teddy system 3.10.

In Extrusion, our system adds the additional geometry to the orig-

27



(a) (b) (c)

(d) (e) (f)

Figure 3.8: Examples of animation assistance: as soon as the user presses
the “Extrusion/Sweep” button, the model is rotated so that the contours
are perpendicular to the screen (a-c). When the user cuts a model, the
/model is automatically rotated so that the cut plane is parallel to the
screen (d-f).

inal model when an outward stroke is drawn and subtracts it when an
inward stroke is drawn. Note that complex “sewing” of polygons is not
necessary and no self-intersection will occur because of the volumetric
data structure. Loop Extrusion applies the standard inward (subtract)
extrusion in both directions. The Sweep operation in our system re-
quires two-path CSG operations to add a new geometry to the original
model. First, the sweep volume of the outermost contour is subtracted
from the original model (Figure 3.11 (a-c)). Then, the regions between
the contours are swept and the sweep volume is added to the model (Fig-
ure 3.11 (d)). This avoids the inner space being filled with the original
geometry.

The volumetric representation significantly simplifies the implemen-
tation of the Cut operation and enables the change in topology. A bi-
nary 2D image is computed from the cutting stroke in the screen space
to specify a “delete” region and a “remain” region. Both ends of the
cutting stroke are extended until they intersect or reach the edges of the
screen. Then, one of the separated regions is set as the “delete” region
(usually the region to the left of the stroke, following the original Teddy
convention). Each voxel is then projected to the screen space to check

28



Figure 3.9: Our Teddy-like Create algorithm

whether it is in the deleted region; if so, the voxel is deleted. This pro-
cess is significantly simpler than traversing the polygonized surface and
remeshing it.

3.5 Results

We used a Dell Dimension 8200 computer that contained a Pentium
4 2-GHz processor and 512 MB of RAM. The graphics card was an
NVIDIA GeForce3 Ti500 with 64 MB of memory. Users can create
models interactively on this machine. We also used a display-integrated
tablet as an input device, with which the user can edit an object more

29



Figure 3.10: Difference of Create algorithm between our system (top
row) and the original Teddy system [68](bottom row).

intuitively. However, some users found it difficult to rotate an object
because they needed to press a button attached to the side of the pen
and move the pen without touching the display.

Figure 3.13 shows some models created using our system. Figure
3.13 (a-c) were created by novices within fifteen minutes of an intro-
ductory fifteen-minute tutorial; the others were created by an expert.
Our observations confirmed that users could create models with internal
structures quickly and easily.

3.6 Discussions

In this section, we presented a sketch-based modeling system for cre-
ating objects with internal structures. The underlying volumetric data
structure simplifies the handling of a dynamically changing topology.
The user can modify the topology easily in various ways, such as by cut-
ting an object, forming a extrusion, specifying multiple contours with
create or sweep operations, or specifying internal structures in conjunc-
tion with temporal deactivation. In addition, automatic rotation of the
object frees the user from tedious manual labor.

However, the limitations also became clear. The users occasionally
found the behavior of Extrusion unpredictable because there was no
depth control. Specifically, when a user tried to create a cavity in an

30



(a) (b) (c) (d)

Figure 3.11: Handling the sweep operation. The outmost contour is
swept along the specified path (a,b) and extracted from the original
model (c). Then, every contour is swept and added to the model.

View point Projection screen 3D model

Figure 3.12: An undesired effect caused by the lack of depth control.
Since there is no depth information in the original model, the newly
created cavity can pierce the wall.

object, the hole sometimes penetrated the wall of the original model
(Figure 3.12). This suggests the necessity of explicit topology control
for the system. In addition, it is difficult to modify shapes locally and
we are exploring ways to add small details. One promising approach to
solve this problem is introduction of multi-resolution data representation
[39]. It is our future work to explore along these directions.

31



(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.13: Results. (a-c) were created by novices, while (d-g) were
created by an expert.

32



Chapter 4

Volumetric Illustration: 2D volumetric

texture synthesis of cross-section

Control map

Reference images

Cutting the model

Textured cross-section

Figure 4.1: System overview. The user can cut the model anywhere
and observe internal textures. Internally, the system first computes a
control map using predefined guiding information and then synthesizes
the texture using the control map and the reference textures.

33



This chapter presents an interactive system for designing and brows-
ing volumetric illustrations. Volumetric illustrations are 3D models with
internal textures that the user can browse by cutting the models at de-
sired locations. To assign internal textures to a surface mesh, the de-
signer cuts the mesh and provides simple guiding information to specify
the correspondence between the cross-section and a reference 2D image.
The guiding information is stored with the geometry and used during
the synthesis of cross-sectional textures. The key idea is to synthesize a
plausible cross-sectional image using a 2D texture-synthesis technique,
instead of sampling from a complete 3D textured volume directly. This
simplifies the design interface and reduces the amount of data, making
it possible for non-experts to rapidly design and use volumetric illustra-
tions. This data structure is an approximation of explicit volume rep-
resentation, which offers easy-to-use volumetric authoring system since
2D information is tractable even with standard 2D input devices (e.g. a
mouse, a tablet).

4.1 Background

Our goal of this work is to develop an interactive designing and
browsing system that allows the user to add interesting textures to sur-
face meshes manually by using existing 2D reference images (Figure 4.1).
The basic property of opaque volumetric data is that we cannot see all of
the 3D volumetric information simultaneously; because of occlusion, we
can see only one 2D cross-section at a time. For example, illustrations
in biology textbooks or scientific magazines often show cross-sections of
a volumetric object to explain internal structures (Figure 4.2). It is also
important to note that these illustrations are the result of careful design
processes rather than a literal simulation of reality. In Figure 2, for ex-
ample, nuclei are seen in all the cells in the illustration, while an actual
cross-section would contain cells whose nuclei were not visible.

Based on this observation, we propose a new representation for 3D
models with internal textures, namely one in which the system syn-
thesizes the internal textures for a cross-section by using 2D reference
images instead of maintaining all the 3D volumetric data (Figure 4.1).
To assign internal textures to a model, the designer specifies the corre-
spondence between a geometric cross-section and a reference 2D image
by providing guiding information, such as flow orientation. This ap-
proach significantly reduces the amount of data that the model requires.

34



It also allows designers to add 3D internal texture to a model without
specifying each voxel manually.

Our technical contributions are the interfaces that are used to as-
sign internal textures to a given surface mesh and the algorithms that
synthesize textures on a cross-section. On a larger scale, our contribu-
tion is a modeling structure in which the specification and viewing of
simple volumetrically textured models is easy and convenient, allowing
non-experts to create volumetric illustrations rapidly.

Figure 4.2: An example of an illustration that reveals internal structures
(courtesy of Saeko Sato)

4.2 Related work

4.2.1 Texture synthesis

Texture synthesis algorithms take reference images as input and syn-
thesize new images that appear similar. The technique is originated from
the context of stochastic machine learning of image pattern [50, 115].
They synthesized a texture to see how successful their model learned
the texture. Probabilistic models used for synthesis of such patterns
include Markov random fields [22]. This model is later introduced to
CG community [32] and inspired a great number of related work. Tex-
ture synthesis algorithms can roughly be categorized into four types:

35



frequency domain, pixel-based, patch-based, and non-periodic tiling.

Frequency domain Early systems used frequency domain tech-
niques [55, 24]. Frequency domain approach is technically sound, but
the quality is usually low and they can handle only specific types of
texture. In addition, it is difficult to extend these algorithms.

Pixel-based approach The pixel-based approach [32, 149] uses a
simpler strategy, which copies and pastes one pixel at a time. This algo-
rithm is a direct application of Markov random field theory. Observing
the neighboring pixels around the target pixel in the destination, the
pixel that has the most similar neighboring pixels in the source image
is retrieved and the central pixel is copied to the target. Its simplicity
draws a great number of extensions. Ashikhmin proposed a method to
restrict the search domain, resulting in more consistent image [7]. Wei et
al. [148] and Turk et al. [143] applied pixel-based technique to synthesize
textures on a surface mesh. Hertzmann et al. applied this technique to
learn arbitrary filter pattern from example images and applied the filter
to other images [59]. This work is called the Image Analogies system
and further extended to generate geometric texture using volumetric
data structure [11].

Patch-based approach The patch-based algorithm copies much
wider area (called a patch) simultaneously [116, 31, 80]. The appropri-
ate offset of the patch is computed by minimizing the image difference of
the overlapped region and then the patch is fused to the target image by
finding the optimal cutting line (optimal in the sense that the boundary
is the least visible.) Such cutting line is found either by dynamic pro-
gramming [31] or by computing maximum cut of the pixel graph [80].
This scheme produces much higher quality images than pixel-based al-
gorithm, mainly due to its larger scale consistency. The main drawback
is that the distinct features of the texture may be discontinuous around
patch boundaries. Recent work try to overcome these problems by com-
bining pixel-based algorithm [99] or locally deforming the patch [154, 99].

Non-periodic Tiling Non-periodic tiling approaches quickly gen-
erate texture patterns [132, 102, 19]. This algorithm first generates finite
number of tiles that satisfy specific boundary conditions and then fill the
target region by just laying out the tiles. The user just need to care that
the neighboring tiles have matching boundary. The drawbacks of this
technique is that it is difficult to compute an appropriate size of the
tile (if the size is inappropriate, many tiles are necessary to have wide

36



variety of structure.)

4.2.2 Non-photorealistic modeling and rendering

This system draws inspiration from various non-photorealistic ren-
dering (NPR) systems that focus on the communication of particular
information rather than the simulation of light transport [45]. Our sys-
tem is particularly influenced by the stylized rendering of 3D models
that synthesize interesting 2D pictures by adding details to simple 3D
geometries on the fly [83, 71]. In a similar spirit, we synthesize detailed
textures on cross-sections of simple surface models.

Some systems also address the problem of authoring. [59] introduced
a painting interface for directing the texture-synthesis process for various
artistic expressions; [71] proposed an interface for painting a 3D model to
specify rendering styles directly. Like these systems, our system provides
a tailored user interface for intuitively designing volumetric illustrations.

4.3 User interface

4.3.1 Browsing interface

The system comprises two functions: browsing and modeling. The
browsing interface is a subset of the modeling interface. The browsing
interface is a standard 3D model viewer with an extension that allows
inspection of internal textures using a cut operation. Rotating and trans-
lating the model are assigned to the right mouse button, and cutting the
model is assigned to the left mouse button. If the right button is pressed
on the model, the model rotates. If the right button is pressed elsewhere,
the model translates parallel to the screen.

The user can cut the model by drawing a freeform stroke that crosses
the model on the screen [68] (Figure 4.3). The cut object then opens
automatically with animation [107] and the user can see the internal
textures on the cross-section. The model closes when the user clicks an
empty space.

Although our current implementation uses a cut operation that is
based on a freeform stroke, the framework can easily be extended to
support other interfaces for specifying cross-sections, such as 3D magic
lenses [145] and two-handed operations using a prop and a plate [61].

37



Figure 4.3: Inspecting internal structures using a freeform cut operation.

4.3.2 Modeling interface

The modeling operation starts by loading a predefined surface mesh
(i.e., a surface mesh that delimits volumetric regions) and predefined
2D images. The goal of the modeling operations is to specify how given
images are to be mapped to the interior of the given surface mesh, while
existing methods usually specify textures on surfaces [49, 110]. The
modeling process has the following steps.

• Cut the target 3D model and specify a 3D region to be textured
by clicking on the cross-section.

• Choose one of the three texture types to use for the region.

• Import a reference 2D image.

• Establish the correspondence between the 2D reference image and
the cross-section of the 3D model by providing the necessary guid-
ance information.

• Repeat steps 1-4 for each 3D region.

We explain each step in turn.

4.3.3 Specifying a region to be filled

First, the user cuts the target surface mesh using the freeform cut
operation. The cross-section reveals the internal structure of the model
and can be divided into several closed regions. For example, a model of
an egg might consist of a spherical surface mesh representing the yolk
enclosed by a larger sphere representing the egg white. In this case, the
cross-section has two regions. The user can simply click on the target
region on the cross-section to specify the 3D region to be textured.

38



4.3.4 Selecting a texture type

When the user clicks on the target region on the cross-section, the
system opens a dialog box that is used to specify the texture type (Figure
4.4a). Once the user has specified the texture type, the system opens
a separate pane that shows the reference image and a reference cube
(Figure 4.4b). The reference cube is an intermediate representation that
visualizes the relationship between the 2D reference image and the 3D
region. Steps 3 and 4 differ slightly for each texture type. Therefore,
we first introduce the three texture types and then explain the steps for
each.

Reference image

Reference cube

Loaded model

(a) (b)

Figure 4.4: Window layout of the system for assigning textures to a
model.

The current system supports three types of textures: isotropic, lay-
ered, and oriented (Figure 4.5). Isotropic textures have a uniform distri-
bution in the 3D space with no dependency on position or orientation.
All of the cross-sections of an isotropic texture look similar, regardless of
their location or orientation. Examples include a sausage, a sponge, and
any other material that consists of isotropic elements. Layered textures
have varying appearances according to their position in the axial or ra-
dial direction. Examples include kiwi fruits, human skin, tree trunks,
and leaves. Layered textures require depth information for the target
3D region. Finally, oriented textures are defined by both a reference im-
age and a flow direction; the appearance of an oriented texture depends
on the orientation of the cut-plane relative to the flow-direction (Fig-
ure 4.5c). Examples include muscle, plant stems (of monocotyledonous

39



plants), and any other material that consists of bundled long fibers. The
oriented texture requires that the flow orientation in the target 3D region
be specified.

We do not claim that these three types cover all possible real-world
textures. Some textures can be combinations of layered and oriented
textures, and some have more complicated structures. We support these
three types in the current implementation because they are relatively
easy to understand, they can be specified with a simple interface, and
they cover a wide range of interesting textures that are commonly seen
in organic materials. Future work will investigate other types of texture
filling.

(a) Isotropic (b) Layered (c) Oriented

Figure 4.5: Examples of texture types

4.3.5 Isotropic textures

The user imports a reference image by dragging an image file and
dropping it onto the source image area in the main window. The user
can choose a specific region of the reference image by rubber banding.
The selected region is immediately transferred to all faces of the refer-
ence cube and to the cross-section of the surface mesh using a texture-
synthesis technique. No guidance information is required in this case
(Figure 6).

4.3.6 Layered textures

A layered texture requires additional guidance information in the
surface mesh to specify the mapping between the image and the model.
The user first draws two freeform strokes that correspond to the upper
and lower bounds of the layer on the imported reference image (Figure

40



Figure 4.6: Using an isotropic texture. The user specifies a region to use
by rectangular rubber banding, and it is then transferred to all faces of
the reference cube and the cross-section.

4.7, left). The first and last points of the two strokes are connected by
straight lines to carve out a portion of the input image. Then, texture-
synthesis techniques fill the side faces of the reference cube using the
portion of the image as a reference (Figure 4.7, middle). The user then
specifies two corresponding upper and lower bounds in the surface mesh
by clicking a boundary or drawing a stroke on the cross-section (Figure
4.7, right). Clicking on the boundary selects the associated surface region
and the stroke becomes the constraint on the cross-section (Figure 4.8).

Region selection

by two strokes Set


correspondences

Reference image Reference cube Cross-section

Figure 4.7: Using a layered texture. The red and blue marks on the
reference image define the upper and lower bounds for the algorithm.
The texture-synthesis techniques fill the side faces of the reference cube,
using the image between the two marks as a reference. Similarly, the red
and blue marks on the surface mesh define the upper and lower bounds.
The texture on the cross-section is synthesized using the reference image
as an example.

41



(a) (b)

Figure 4.8: Clicking a boundary on the cross-section selects the associ-
ated surface region as the upper or lower bound (a). We assume that the
user has predefined the correspondence between a boundary and a sur-
face region (provided as a surface mesh). A stroke drawn in the interior
of a cross-section becomes a bound on the cross-section (b).

4.3.7 Oriented textures

An oriented texture has distinct appearances in cross-sections that
are perpendicular and parallel to the flow orientation. Our current im-
plementation asks the user to provide a reference image for the cross-
sections perpendicular to the flow orientation. The reference image must
be isotropic. The user specifies a rectangular region in the reference im-
age using rubber banding. The system then synthesizes the top face
of the reference cube using the selected region as a reference. Then, it
generates a reference volume by sweeping the image vertically and shows
textures for the cross-sections parallel to the flow orientation on the side
faces of the reference cube.

We experimented with other strategies for specifying the reference
volume. One let the user specify the images for the side faces of the
volume, and the other let the user specify the images on both the top
and side faces. We used Wei’s volumetric texture-synthesis technique
to synthesize the reference volume in these cases [148]. We did not
pursue this direction further in our current implementation because it
was too slow and the quality of the resulting volume was unsatisfactory.
However, it is sometimes desirable to specify the appearance of side faces,
and in the future we will investigate efficient supporting strategies.

An oriented texture requires the user to specify the flow field across

42



the target region as guidance information. This is done by drawing short
arrows that represent local flow directions on the cross-section and sur-
face of the region (Figure 4.9, right) [143]. Our current implementation
does not allow the user to draw arrows that are not parallel to the cross-
section. Therefore, the user should cut the model parallel to the desired
flow orientation.

Region selection


by rubber banding

Reference image

Reference cube

Cross-section

Set correspondences


by flow field

Figure 4.9: Using an oriented texture. The user specifies a region to use
by rectangular rubber banding, and it is then transferred to the top face
of the reference cube. The system generates the side faces by sweeping
the image on the top face vertically. The user draws short arrows on the
cross-section to specify the flow orientation.

4.4 Algorithms

This section describes the algorithms and implementation details for
synthesizing a texture for a given cross-section using the reference images
and the associated guidance information. The cutting operation cuts the
model by sweeping a user-drawn 2D stroke in the direction perpendic-
ular to the screen (we use orthogonal projection). Using this curved
plane, a model is divided by CSG operations [64]. The parametrization
of the cross-section is given as follows: the y-axis is defined along the
cutting stroke and the x-axis is defined along the sweeping direction.
The starting point of the stroke becomes y=0 and the corner of the
model’s bounding box nearest the screen becomes x=0. The imported
surface mesh is scaled so that the size of the bounding box equals 1, and
the pixel size of the synthesized texture is 1/150 1/400 in our current
implementation. A cross-sectional bitmap is obtained by synthesizing
the pixel color at each grid point on this parameterized cross-section
within a rectangular region that covers the model’s bounding box. If

43



the user wants to change the scale of the synthesized texture, the origi-
nal image must be scaled beforehand. We describe our texture-synthesis
algorithms for each of the three texture types.

4.4.1 Isotropic textures

An isotropic texture has no dependency on position or direction.
Therefore, we simply use a standard 2D texture-synthesis algorithm to
construct a 2D texture image for the cross-section [149, 19, 80]. The
system uses the selected region in the original reference image as the
reference for the synthesis directly. The reference cube exists only to
give feedback to the user. Note that there is no guarantee of obtaining
exactly the same image when a model is cut twice at the same cross-
section. However, since our aim is to convey a volumetric impression
rather than to generate consistent volumetric data, we believe that this
simple approach is sufficient.

4.4.2 Layered textures

A layered texture has an appearance that varies according to the
depth. Therefore, the algorithm needs depth information for each pixel
in the reference image and target cross-section. Figure 4.10 illustrates
the overall process. The system generates a reference control map for
the reference image and a target control map for the cross-section. A
control map is a grayscale 2D image in which the floating-point pixel
values indicate associated depth values.

The grayscale values of the reference control map represent a smooth
2D depth field constrained by the two bounds provided in the reference
image. The mark for the upper bound (red curve in Figure 4.10) is
associated with depth value 0 and that for the lower bound (blue curve
in Figure 4.10) is associated with depth value 1. We use a 2D thin-
plate interpolation technique [142] to compute this smooth 2D depth
field (reference control map in Figure 4.10). The depth field is given as
a continuous function that returns a scalar value for a given 2D position.
This function is sampled on each pixel location on the reference control
map, which has the same resolution as the reference image.

To construct the target control map, the system first computes a 3D
scalar field using the user-defined upper and lower bound 3D geometries
as constraints. The upper-bound geometry (a surface region or a line in
3D space) is associated with depth value 0 and the lower-bound geometry

44



Reference image
Synthesized

cross-section

Reference

control map Target control map

Figure 4.10: Overview of texture synthesis for layered textures. The
system synthesizes the texture bitmap for a cross-section by using the
reference image, the reference control map associated with the reference
image, and the target control map associated with the target texture.

is associated with depth value 1. Again, we use Turk and O’Brien’s 3D
thin-plate interpolation technique to construct this smooth 3D scalar
field [142]. When the user cuts the model, the system generates a 2D
target control map by sampling the aforementioned 3D depth field on
the cross-section.

Given the reference image, reference control map, and target control
map, it is now possible to start the texture synthesis process using a
pixel-based technique. This synthesis process is similar to field distortion
synthesis, which is used for texture synthesis on surfaces [143, 158]. The
differences are as follows (also see Figure 4.11):

1. An orientation field is computed from the target control map
as the gradient direction in the target control map. 2. Each pixel in
the reference image also has an orientation computed as the gradient
direction in the reference control map. The neighboring structures are
computed according to this orientation. 3. The order of synthesis is
determined using the depth value of pixels. 4. When synthesizing a pixel

45



in the target image, the search space in the reference image is restricted
by the depth value of the pixel being synthesized; pixels whose depth
value equals that of the synthesizing pixel are subject to the search.
In our implementation, real-valued depth values are discretized into 32
levels and the pixels are indexed according to the discretized scalar level
during preprocessing.

Reference control map

Reference image

Target control map

Synthesized texture bitmap

Check


gradient


and


depth value

Compare the pixels


in the rotated neighborhood

Rotate the


neighborhood
Rotate the


neighborhood

Figure 4.11: Computing the pixel color in the synthesized texture. First,
the system rotates the neighborhood of the target pixel so that the gradi-
ent of the target control map matches that of the reference control map.
Then, the system compares the rotated neighborhood of the target pixel
with that of the reference image around a pixel whose gray-scale value
in the reference control map is identical to the gray-scale value in the
target control map.

4.4.3 Oriented textures

The synthesis process for an oriented texture requires a 3D reference
volume and a flow field defined in the 3D region in the surface mesh.
As already discussed, the 3D reference volume is obtained by sweeping
the top face of the reference cube vertically. The top face is synthesized

46



using the selected region in the reference image as the example. The
reference volume is oriented vertically (each pixel in the reference volume
is associated with a vertical flow vector) and the size of the reference
volume is 64× 64× 64.

The construction of the 3D flow field again uses the thin-plate inter-
polation technique [142], employing user-defined arrows as constraints.
A smooth scalar-valued interpolation function is constructed for each xyz
component. The flow field is constructed by combining them and nor-
malizing the resulting flow vectors. This approach can produce singular
points where no flow is defined. However, singular points rarely appear
on the cross-section in our system because the user cuts the model using
a freeform stroke. When singular points do appear, we assign a random
orientation to the pixel. After obtaining the 3D flow field, the system
generates a 2D target control map for the given cross-section (each pixel
is associated with a flow orientation) by sampling the flow vectors along
the cross-section.

At this point, we have the 3D reference volume (associated with
vertical flow orientation) and the 2D control map for the cross-section
that contains the flow vectors for each pixel. Given this information, the
system computes the color for each pixel in the cross-section by finding a
pixel in the reference volume that has a similar neighborhood [149]. The
similarity of neighbors is computed as follows. The neighborhood of the
pixel on the cross-section is approximated by a small flat rectangle. For
each pixel in the reference volume, the system samples the neighborhood
in a corresponding small flat rectangle whose slant angle (angle between
the rectangle and the vertical flow vector) equals that of the rectangle on
the cross-section (Figure 4.12). Rotation about the flow vector does not
matter, because we assume that the reference volume has an isotropic
structure on cross-sections perpendicular to the flow orientation.

Given the rectangle on the cross-section and that in the reference
volume, the system can now compare the similarity between the two.

Ideally, the system should sample every possible small rectangle in
the entire reference volume. For performance reasons, however, the sys-
tem samples pixels in a slanted 2D square region at the center of the
reference volume and uses the resulting image as a reference for stan-
dard 2D texture synthesis. In our current implementation, the size of
the square is 45 × 45 (to fit within the reference volume completely).
We further reduce the computation time by caching the sampled image

47



using discretized slant angles as keys (a discretization step is π/32).

Reference volume

Cross-section with flow vectors

Synthesized


textures

Neighborhood of


the target pixel

Figure 4.12: Finding pixels that have a similar neighborhood in the
reference volume for each pixel in the cross-section.

4.5 Results

Figure 4.13 shows some volumetric illustrations that were created
using our system. The amount of data in the models, time for design,
and time for synthesizing the cross-section are summarized in Table 1.
For isotropic and oriented textures, we used a three-level multi-resolution
pyramid with a 3 × 3 square neighbor for lower resolution and a 5 × 5
L-shaped neighbor for higher resolution. For layered textures, we used a
3×3 square neighbor for lower resolution and a 5×3 rectangular neighbor
for higher resolution. We used a laptop computer with a Pentium M 1.6-
GHz processor and 1 GB of RAM. Although in some cases it took more
than 10 seconds to obtain the result for the finest resolution, this did not
impede the interactive modeling process because progressive synthesis of
cross-section images frees the user from waiting for the final result each
time. Since the resolution of the cross-section is approximately 300×300,
the quality is comparable to that of 3003 colored voxels, which would
require approximately 80 MB of storage.

48



Figure 4.13: Results (Cucumber,Bamboo,Stomach,Tooth)

Title Amount of
data (without
compression)

Modeling time
(excluding
mesh editing)

Synthesis
time

Meat (Fig-
ure 4.1)

622 kb 90 sec 22 sec

Cucumber 53 kb 40 sec 4 sec
Bamboo 291 kb 30 sec 14 sec
Stomach 402 kb 15 sec 18 sec
Tooth 307 kb 120 sec 32 sec

Table 1 Statistics for the example models

4.6 Discussions

In this chapter, we described a modeling and browsing system that
adds internal textures to a surface mesh. The user provides 2D reference
images and a surface mesh with simple guidance information that spec-
ifies the correspondences between them. When the user cuts the model,
the system synthesizes cross-sectional images using 2D texture-synthesis

49



techniques. This system would be useful for conveying volumetric in-
formation, such as between a teacher and students, a doctor and a pa-
tient, or a virtual-reality content-provider and consumers. Although the
lack of real volumetric data makes some applications impossible, such as
translucent rendering or volumetric simulation, our lightweight data rep-
resentation may well be useful in many applications such applications as
games or virtual world construction, where precision or volumetric con-
sistency is not the main concern. It is because such application domains,
visual effects and necessary computational resource trades.

Nevertheless, our system has several limitations. One is the com-
putational cost for synthesis. Although the required memory is much
less than that of 3D textured volume, necessary computation for gen-
erating quality cross-section is rather high. More specifically, a layered
texture rotates the neighbors so that the gradient of the target control
map matches that of the reference control map, while an oriented tex-
ture generates a 2D reference image by slicing the reference volume at an
appropriate angle for each pixel. These processes require more compu-
tation than standard texture synthesis. The quality of the synthesized
image also requires improvement, in part because of the cascading re-
sampling and resulting distortion. In future work, we will improve both
the performance and quality of the overall process. In the Appendix A,
we propose an idea to improve the quality of the cross-sectional image by
introducing patch-based technique (with significant loss of computation
time, though).

One interesting avenue for future research is to enhance images of
the cross-section by using the information that is embedded in the pix-
els of the reference map. For example, we can add text annotation and
displacement mapping on the cross-section. The pixels of the reference
image are associated with annotations and displacements, and the sys-
tem adds them to the corresponding pixels on the cross-section. Text
annotation allows designers to add textual explanations to the internal
material of 3D models, which would be useful for educational and com-
munication applications. Displacement mapping can add realism to a
cross-section, as cross-sections of real objects cannot be perfectly flat.
Adding such additional information to 3D regions directly can be very
difficult, but is straightforward in our framework.

50



Chapter 5

Contour-based segmentation interface

Volume segmentation is the process to carve out the region of interest
(ROI) of the volume data. This is one of the most important operations
for volume data since there are a great number of applications such as
volume computation (by counting the number of the voxels in the ROI),
enhanced volume rendering, and intelligent interaction to volumes. The
image segmentation technique has been and still is a central topic of
computer vision research and volume segmentation can be treated as
a straightforward extension of 2D image segmentation. Unfortunately,
successful and fully automatic general-purpose image segmentation still
does not exist. Therefore, it is important to efficiently supply neces-
sary information to the system manually, while keeping the maximum
automaticity.

In the previous section, we presented a system that generates im-
plicit volume data from scratch using a sequence of simple gestural oper-
ations. On the other hand, as described in Section 2.2.1, the main source
of volumetric data is the scanning of real-world objects. The typical
scanning devices capture the target objects as a set of 2D cross-sectional
images. A naive but most robust, and therefore still used segmentation
method is to segment regions in each 2D cross-sectional image, result-
ing in a set of parallel cross-sectional contours. One drawback of this
approach is that the number of images is usually large. Therefore, the
user cannot help but work on a part of the images. In this case, how
contours between cross-sections should be connected is often ambiguous.
In this chapter, we propose an algorithm that enumerates all possible
cases of the correspondence of contours, aiming at a smart system by
which the user can specify the topology of the contour easily. The signif-
icance of listing all cases lies in the possibility to automatically find the

51



global optimal solution with respect to the interpolating shape objective
function.

5.1 Background

Computed tomography (CT) and magnetic resonance (MR) devices
enable us to easily obtain cross-sectional images from physical objects.
When polygonal meshes are constructed from sparse cross-sectional con-
tours, each interspace between adjacent cross-sectional planes has to be
filled by interpolation. If the shape of the object is simple, the inter-
polation is trivial. However, handling real-world medical data, such as
human skeleton or brain, becomes difficult as the spacing between slices
increases and when the numbers of contours in adjacent cross sections
differ.

There has been many previous work in this field [40, 121, 141]. How-
ever, the existing work focuses mainly on how to obtain a smooth tran-
sition rather than on the correspondence of topological structures. For
example, in Figure 5.1, it is not easy to determine the correct topo-
logical structure for the interspace. Suppose that the six contours are
obtained from a blood vessel. One may speculate that two streams meet
between the two slices as shown in Figure 5.1(a). However, if shape-
based interpolation[121] is used, for example, the result is four pillars, as
shown in Figure 5.1(b) (arising from the four areas of overlap in a top
view).

It is usually difficult to determine topological structure without ad-
ditional knowledge about the object. In Figure 5.1, the four pillars
could actually be the correct interpolation for some other physical ob-
ject. Although topological structure is important, a user’s knowledge is
not limited to topology. The topology of an object describes just one
part of the full shape information - the skeleton information. Examples
of such information are the integral of the surface curvature, volume
of the object, or its interference with other objects’ surfaces. However,
these quantities cannot be computed or modified, until the topological
structure is determined.

In this chapter, we propose a method that enumerates all possible
topological structures. A polygonal mesh is then constructed for each
result in the enumeration. The patterns are then sorted by an objective
function that evaluates how good the interpolated shape is. We view this
algorithm as a basis for pseudo-automatic topology generator. Although

52



Input contours

(a) (b)

Top view of the input
(Four areas overlap)

Figure 5.1: Ambiguity in interpolating contours where the interpolated
object could be either a bifurcating pipe (a) or four pillars (b)

our current system generates a huge number of possible patterns, listing
all possible cases enables to find the global optimum, which probably be
the best guess of the system. The objective functions bring out the full
performance and the user interaction becomes simple. We tried to sort
enumerated results by a simple objective function and observed that it
works fine in many cases.

5.2 Related work

Over two decades have been devoted to research on interpolation
of contours [75]. Fuchs et al. presented an algorithm to convert the
problem of finding the correspondence between points on contours into
the problem of finding the minimum cost path in a directed toroidal
graph, although this work did not deal with bifurcation [40]. Later work
has taken bifurcation into account. The original toroidal graph was ex-
tended to deal with bifurcations and holes by Shantz [125]. Shinagawa
et al. extended the toroidal graph to be continuous.[129] Christiansen
et al. proposed an algorithm based on the connection of the nearest
points [18]. Ekoule et al. proposed another method that handles highly

53



complex bifurcations and convex contours [33]. The Delaunay triangula-
tions can also be used for solving the correspondence problem [15]. These
methods typically use contours defined by pieces of straight lines as in-
put, calculate the correspondence between junction points, and output
triangulated meshes.

There is yet another approach where a 2D function is defined for each
cross section and is interpolated in 3D. In this framework, each cross-
sectional contour is first converted to a binary image and then converted
to a grayscale image where the intensity of a pixel is computed as the
distance from the contours [121, 57]. It calculates the gray value as
the shortest signed distance from the contours (a positive value for the
interior of the contours and a negative for the exterior) and is linearly
interpolated in 3D. The final surface is then extracted as the isosurface of
the 3D field distance function. Recently, shape-based interpolation has
been further extended by using information about the correspondence of
contours [141]. Distance field manipulation is similar to these approaches
[109].

If the spacing between slices is quite narrow, it is possible to solve
the contour interpolation problem as the interpolation of unorganized
points [65, 8]. In this scenario, each contour is converted to a set of
unorganized points having no connectivity information. There is some
work involved in the reconstruction from this set of unorganized points,
mainly in the context of approximating the object surface obtained by
range scanners or stereo matching algorithms.

Other approaches include work by Cong et al., in which a numerical
solver was used that directly calculates the functional value in 3D [20].
Yet another method uses singularity and the distance between contours
in determining bifurcation, [128] which has similarities to our algorithm.
However, there is still a possibility with this method of rejecting a correct
result, since it only uses the distances between contours and the genus
as the knowledge of an object. Our method just outputs possible results,
giving further information about an object such as the curvature limit
or the volume of the closed area.

54



(a) (b) (c)

Figure 5.2: Construction of a Reeb graph where the original object (a)
is sliced (b) and the corresponding Reeb graph (c) is constructed by
handling each contour as a point

5.3 Algorithm

5.3.1 Notation

Reeb graphs

The first tool we use is the so-called Reeb graph. A Reeb graph is
a graph that gives a simple representation of the topology (bifurcation
status) of a continuous function defined onto an object. One of the
simplest functions is the height function h. The height function h simply
returns the height (e.g. the z value) of the point of the surface.

A Reeb graph of an object is built as follows. As depicted in Figure
5.2, the object is sliced and each cross-sectional contour is represented
as a point of the Reeb graph. The points where two (or more) contours
meet or a contour disappears are called the singular points (see Figure
5.3). Mathematically, the singular points are defined as the points where

∂h

∂x
=

∂h

∂y
= 0 (5.1)

holds (see Morse theory).
The importance of the number of singular points is as follows. If

the input contours are as shown in Figure 5.4(a), then from traditional
assumptions of bifurcations and from the distance between contours, the
topology shown in Figure 5.4(b) results. However, if the user specifies
knowledge about the number of singular points, (in this case, “two”,)
the topology shown in Figure 5.4 (c) should be the correct answer.

The singular points are represented as the nodes of the Reeb graph
[128]. Singular points where more than two contours meet are said to

55



(a) (b) (c)

Figure 5.3: Singular points: a peak point (a), a pit point (b), and a
saddle point (c)

(a) (b) (c)

Figure 5.4: An example in which the number of singular points is impor-
tant where the input contours(a) are interpolated either using general
assumptions only(b), or with knowledge about the number of singular
points(c)

56



(a) (b) (c)

Figure 5.5: An example of a degenerate singular point (a) where the
singular point connects three contours to one contour (b) which can
also be interpreted as the combination of two 2-to-1 singular points that
coincide at this point (c)

be degenerate (see Figure 5.5). These degenerate singular points can be
decomposed into a sequence of simple 2-to-1 singular points. Although
it is possible to use other functions,[60] the Reeb graph of the height
function is sufficient for this system.

Contour trees

A contour tree represents the circumscription relationship of con-
tours in a slice, and similar notions have been used previously [56]. Each
node in a contour tree represents one contour and each edge represents
the circumscription relationship between two contours. A contour cir-
cumscribes all contours which are its descendants in the contour tree. In
general, there is more than one separate object in an image. In this case,
more than one connected component exists in a contour tree. For con-
venience, we assume that there is a virtual contour that circumscribes
all the contours in the image and the corresponding root node is added
to the contour tree. Such a contour is called a Virtual Hollow Contour
(VHC) (see Figure 5.6). A singular point exists at the height where the
topology of the contour tree changes [130].

5.3.2 Outline of the proposed algorithm

We assume that contours are already extracted from input images
and the contour trees are built. The outline of the algorithm is as follows.

• Transform a contour tree of each slice by the operations that merge
or eliminate nodes. This corresponds to the transformation of the
Reeb graph. Each elementary transformation generates a singu-

57



Image Contour Tree

VHC

Figure 5.6: An example of a contour tree where each contour in an image
corresponds to a node in the contour tree and a parent-child relationship
in the contour tree implies a circumscription relationship in the image.
The root node of the contour tree is the VHC

lar point. At this stage, all possible transformation patterns are
enumerated. We limit ourselves to the cases where nodes are only
merged or eliminated rather than divided or added because the
increase in the number of nodes in these cases leads to an infinite
number of solutions. This restriction is further discussed later on.

• Two of the transformed contour trees are compared, each of which
is one of the enumerated contour trees from adjacent slices. If
both trees have the same structure, the transformation operations
applied in the previous stage are validated.

Transformation of a contour tree

According to the Morse theory, there are three types of non-degenerate
singular points. In what follows, we denote them by e0,e1 and e2 using
the same notations as the cells corresponding to the singular points [130].
There are twelve types of Morse operators defined [130]. If operations
that increase the number of contours are allowed, the number of pos-
sible Reeb graphs becomes infinite. Moreover, it causes an unnatural
result as in Figure 5.7, where topological structure in the interspace is
complicated (more specifically, when the object is sliced by a plane at
the middle of the original upper and lower cross sections, the number
of cross-sectional contours is larger than that on either of the original
planes.)

For this reason, we assume the number of contours will never in-

58



Figure 5.7: An example of an unnatural result caused by an increase in
the number of contours

e 0

(E0)
e 1

(E1_SI)
e 1

(E1_PC)

(a) (b) (c)

Figure 5.8: Three types of Morse operators which correspond to the
singular points e0 and e1 where e0 removes a contour and e1 connects
two contours

crease at the enumeration stage. Thus, we adopt only three types of
Morse operators. The singular point e0 is considered to be the point
where a contour disappears as shown in Figure 5.8(a) (if seen from top
to bottom); i.e., this removes a node in a contour tree. The correspond-
ing operator is E0. The singular point e1 is a point where two contours
are connected. Since there are two types of operations in the case of the
singular point e1 (that is, it connects either sibling contours as shown
in Figure 5.8(b) or the parent and child contours as shown in Figure
5.8(c)), the corresponding two operators (E1 SI and E1 PC) are de-
fined. Note the difference between the singular points and the Morse
operators. E0 is the operator that corresponds to the singular point e0,
whereas E1 SI and E1 PC correspond to e1.

59



a
b

c
d

a

b

c

d
Connect

b d
a+c

a+c

b d

Figure 5.9: An example of E1 SI where descendant nodes b and d are
merged after the connection

a
b

c d

a
b

c d
Merge

a+bc d

c d

a+b

Figure 5.10: An example of E1 PC where after the contour a and b are
merged, c,d and a+b become sibling nodes

When one of the three operators is applied to a part of a contour tree,
the remaining part of the contour tree is affected accordingly [130]. If
E0 is applied, all the descendant nodes must be removed simultaneously
to avoid self intersection that never occurs in the case of natural solid
objects. When E1 SI is applied, the descendants of the connected two
contours are simply merged and become the descendants of the newly
created node (see Figure 5.9). The E1 PC case is more complicated (see
Figure 5.10). In this case, contour a(parent) and contour b(child) are
connected. The newly created contour a+b and the descendants of b
(c,d) become siblings. The general case is shown in Figure 5.11.

60



Figure 5.11: When a parent and a child are connected by E1 PC, the
descendant nodes of the child become sibling nodes of the parent node.

Figure 5.12: All the enumerated patterns by the application of E0 to
the contour tree shown in Figure 5.6

Enumeration

Enumerating every possible correspondence of contours amounts to
enumerating all the possible transformations of contour trees and match-
ing them, which in turn amounts to seeking all possible combinations of
the aforementioned operators. A problem is the complex behavior of the
remaining parts of the tree when the operators are applied. We propose
the following algorithm.

1. Applying E0

At first, we enumerate all the combinations of E0. To do this, we
traverse the contour tree from the root(VHC) and set a flag at
each node indicating whether to apply E0 in breadth-first order or
not. As an exception, the root node (VHC) is never marked. If a
node is marked as “apply E0”, all the descendants are deleted. An
example of the result at this stage is shown in Figure 5.12, where
the contour tree shown in Figure 5.6 is used as input.

2. Applying E1 SI and E1 PC

Next, E1 SI and E1 PC are applied. These operators merge nodes
in the contour tree. As we stated previously, E1 PC creates a

61



1

2

1

3

1

2  3

Figure 5.13: An example of E1 SI application by indexing, where both
children of VHC have index “1” and these two nodes are connected by
E1 SI

complex structure in the remaining part of the tree. To handle
this, we again mark the nodes. At this stage, both operators con-
nect nodes several times and eventually a certain number of nodes
remain, regardless of the applied operators. To describe this, we
assign the same index number to the original nodes which merge
to one node. Figure 5.13 depicts an example of the correspondence
between indexing and the actual application of the operators. In
this case, nodes that have index “1” are connected. The applied
operator is E1 SI because the original two nodes with index “1”
are siblings. Every time a merge operation is applied, it is neces-
sary to move the other part of the tree according to the type of the
operator. This is repeated until no two neighboring nodes have the
same index. If any two nodes still have the same index, the index
assignment is invalid (e.g., Figure 5.14). This test is performed for
every combination of index assignments.

By converting the combination of operators to the indexing prob-
lem, the order of operators is lost; e.g., the difference between
Figure 5.15(a) and Figure 5.15(b) is not distinguished. However,
we do not regard this difference as important because in many
cases, the height of the singular points depends on what kind of
smoothing algorithm is used in the final mesh reconstruction. In
this work, the constructed Reeb graph is just used for determin-
ing the initial mesh. The final surface shape is not necessarily the
same as the original Reeb graph.

Matching the contour trees

After the possible contour trees are enumerated, the two trees enu-
merated from adjacent cross sections are compared. If they have iden-
tical structure, the two contour trees can be matched. In this case no

62



2

1

1

Figure 5.14: Impossible assignment of indices where two nodes with
index “1” are contained and these nodes cannot be connected because
they are neither siblings nor parent-child nodes

(a) (b)

Figure 5.15: Examples of singular points at different heights

more transformation of contour trees (singular points) is necessary to
connect the contours.

5.4 Implementation

5.4.1 Initial mesh construction

Once the correspondence of contours is determined, the surface of
the object is constructed. Although construction of the surface is not
essential in this system, we propose a simple procedure here. At first,
the position of each singular point is calculated by the following two
steps.

1. Determine the two dimensional positions of the singular points on
the cross-sectional plane. If the singular point is e0, the position
is simply the center of gravity of the contour connected to the
singular point. If the type of singular point is e1, the position is
calculated as the center of the closest two points[18] (see Figure
5.16).

2. Determine the height of each singular point within the correspond-
ing interspace. The height order of singular points corresponds to
the application order of the Morse operators (see section 3.2). The

63



Closest Pair Generated
Singular Point

Calculated Shape
of the Contours

Figure 5.16: Calculation of contour shapes where a new singular point
is generated at the center of the closest pair of contours

Height Height

Figure 5.17: Calculation of the height of each singular point, where
each singular point is located evenly in the height direction retaining
the height order within the connected component

singular points are located evenly in the height direction retaining
the height order (see Figure 5.17). Note the height difference be-
tween singular points is calculated for each connected component
of the Reeb graph within an interspace.

Finally, the mesh is built. It is an easy and well-studied problem
because all the bifurcation points and the corresponding contour shapes
are already calculated. It means that the topological shape is already
known and only the one-to-one correspondence of contours should be
considered. In addition, because newly created contours have similar
shapes to the neighboring contours as shown in Figure 5.16, it is trivial
to find the correspondence of points between the new contour and the

64



Figure 5.18: A screen shot of our interactive topology selector

neighbors. When the contours on adjacent slices vary widely in shape,
we use the toroidal graph[40] to calculate the correspondence.

5.4.2 Experimental Results

We have implemented an interactive topology selector as shown in
Figure 5.18. When the contour data is input (Figure 5.19 (a)), possible
Reeb graphs are automatically enumerated. This software also has an
ability to sort the enumerated results using an objective function. This
function is designed to minimize the number of singular points[48] and
the distance between connected contours. If the Reeb graph at the top of
the list is not satisfactory, the user can select another Reeb graph (Figure
5.19 (b)). After the topology is set, an initial mesh is constructed (Figure
5.19 (c)). Finally the mesh is smoothed and output (Figure 5.19 (d)).

We used the Loop subdivision scheme [89] to smooth the mesh.
The final shape does not exactly “interpolate” the original contour data
because the Loop subdivision scheme is an “approximating” subdivision
scheme in comparison to “interpolating” subdivision schemes such as
the Butterfly or the Kobblet schemes. We do not consider this problem
crucial in this paper, but if the final surface must strictly passes through
the input contours, interpolating subdivision schemes or, alternatively,
other smoothing methods such as the global thin plate energy minimizing
method [151] or the non-shrinking Gaussian smoothing method [139]
should be used.

65



(a) (b)

(c) (d)

Figure 5.19: An example of input contours (a), the Reeb graph which has
the smallest objective function value (b), the constructed initial mesh
(c), and the smoothed surface (d)

66



Figure 5.20: Seven enumerated results from six contours on four slices
rendered by translucent polygons

67



All the enumerated patterns when contour images with four slices
are input are shown in Figure 5.20. In this example, the topmost image
and the bottommost image contain no contour while the second image
contains four contours and the third image contains two contours. In
this case, only seven patterns are possible (Figure 5.20 (a)-(g)). The
final mesh is rendered as translucent polygons. (e) and (f) may need
more explanation. The difference between (c) and (e) is that in (e), the
top-right small contour is connected to its exterior contour while in (c),
it is deleted. The difference between (d) and (f) is the same.

Figure 5.21 shows the results of our method. The four columns show
the input contours, the Reeb graph, the reconstructed initial mesh and
the final smooth mesh, respectively. In the pelvis and the bronchus data,
the contours are extracted manually by Bézier curves and then converted
to point lists. Table 5.4.2 and 5.4.2 show the enumeration results. The
leftmost column shows the indices of the interspace. The second column
is the number of contours in the slices at the upper and the lower regions
of the interspace. The third column is the number of correct singular
points. The fourth column is the number of the enumerated Reeb graphs.
The last column is the manually chosen correct indices of the Reeb graph.
If this number is 0, the top candidate of the sorted result was correct and
no manual selection was required. In most cases, this is just the smallest
possible number under the given input contours which can automatically
be calculated. However in other cases, this is manually specified.

5.5 Discussions

We have proposed an algorithm to enumerate every possible corre-
spondence of contours when interpolating cross-sectional images. This
allows us to explicitly handle topological ambiguity and avoids falling
into local minima by finding the answer which best matches the user’s
knowledge about the object.

However, the current implementation has some room for further im-
provements in order to achieve a fully automatic reconstruction. To
begin with, we need to find an appropriate method to model the user’s
knowledge about an object. Our final goal is to develop a system which
outputs a correct result without any interaction by the user. Although
the current implementation automatically optimizes the number of sin-
gular points and average distances between contours, it is not, by itself,
sufficient to achieve our goal. One possible improvement of the algorithm

68



Torus (five slices)

Pelvis (eighteen slices)

Vertebra (eight slices)

Bronchus (twenty-three slices)

Figure 5.21: Results of the application of our algorithm to various data

69



Table 5.1: The result of enumeration for pelvis data

Id. #Contours #Singularities #Candidates Correct Id.

0 0-3 3 1 0
1 3-6 3 2100 35
2 6-3 3 2100 63
3 3-3 0 6 0
4 3-3 0 6 0
5 3-4 1 60 2
6 4-3 1 60 1
7 3-3 0 6 0
8 3-5 2 390 5
9 5-5 0 120 0
10 5-4 1 360 0
11 4-6 2 3360 36
12 6-4 2 3360 14
13 4-4 0 24 0
14 4-2 2 50 0
15 2-2 0 2 0
16 2-0 2 1 0

70



Table 5.2: The result of numeration for bronchus data

Id. #Contours #Singularities #Candidates Correct Id.

0 0-3 3 1 0
1 3-4 1 60 11
2 4-5 1 360 3
3 5-5 2 5400 8
4 5-7 4 378000 7
5 7-8 1 181440 2
6 8-7 1 181440 0
7 7-7 0 5040 0
8 7-6 3 670320 0
9 6-6 2 52920 1
10 6-6 0 720 0
11 6-6 0 720 0
12 6-5 1 2520 0
13 5-5 0 120 0
14 5-5 0 120 0
15 5-3 2 390 0
16 3-2 1 12 0
17 2-2 0 2 0
18 2-2 0 2 0
19 2-2 0 2 0
20 2-2 0 2 0
21 2-0 2 1 0

71



is the consideration of more global knowledge such as the entire integral
of the surface curvature or the number of bifurcations or holes. A more
straightforward approach would be to input a complete 3D model into
the system as the knowledge about an object, which is the so-called
model fitting. In this framework, our enumeration strategy is also useful
to avoid finding local minima.

In our algorithm, every contour is used during calculations. To
handle larger size data , the grouping of contours will be essential because
of its computational complexity. If the average number of contours in a
slice is N , the upper bound on the number of enumerated cases in an
interspace is O(N2N ).

Finally, how to handle contours on planes which are not parallel is
not discussed in this paper. However, our method can easily be applied,
provided that each cross section has only two adjacent cross-sectional
slices on each side.

72



Chapter 6

Volume catcher: a simple user interface

for volume segmentation

(a) (b) (c)

Figure 6.1: (a) 105× 73× 73 head MRI data. (b) Drawing a 2D stroke
along the contour of the brain. (c) Resulting 3D region. The system
automatically computes the depth of the stroke and applies constrained
segmentation.

We proposed an extension of existing contour-based segmentation
algorithms in the previous chapter. However, this work requires the re-
sult of 2D segmentation on some of the cross-sectional images as a set of
contours. This chapter proposes a simple and intuitive user interface for
volume segmentation: instead of working on the cross-sectional images,
the user traces the contour of the target region using a 2D free form
stroke directly on the screen, and the system instantly returns a plau-
sible 3D region inside the stroke by applying a segmentation algorithm.
The main contribution is that the system automatically infers the depth
information of the ROI by analyzing the data, while existing systems
require the user to explicitly provide the depth information. Our system
first computes the 3D location of the user-specified 2D stroke based on

73



the assumption that the user traced the silhouette of the ROI, that is,
the curve where the gradient is perpendicular to the view direction. The
system then places constraint points around the 3D stroke to guide the
following segmentation. Foreground constraints are placed inside of the
stroke and background constraints are placed outside of the stroke. We
currently use Nock et al.’s statistical region merging algorithm [103] for
the segmentation. We tested our system with real-world examples to
verify the effectiveness or our approach.

6.1 Background

Volume segmentation is the process of splitting volume data into
several perceptual or semantic units. It is a fundamental procedure that
is required to obtain useful information from the volume region such
as its shape, topology, and various measurements (cubic volume, num-
ber of components, etc.). The importance of volumetric segmentation
has been widely recognized for about 30 years and many sophisticated
segmentation algorithms have been proposed.

However, no fully automated method is yet available (Section 2.5).
The reason is that segmentation is dependent on the observer’s subjec-
tive interpretation, which is impossible to obtain without user interven-
tion. Most segmentation methods have focused on low-level features
such as edge detection and texture analysis, and have achieved some de-
gree of success. The difficult part is high-level recognition that is related
to the semantics of data. For example, suppose we have a scene that
contains a bunch of grape on a dish. “A bunch of grape” or “a dish” are
both semantic elements, which may consist of more than one low level
feature. The user may want to carve out only one grape, or the entire
bunch, or even the entire bunch along with the dish. These options are
all probable depending on the intent of the user. Therefore it is crucial
for the user to give appropriate guiding information to get the desired
segmentation result.

From the user’s point of view, one problem with 3D volumetric seg-
mentation is that 3D guiding information is hard to specify since the
typical input device is a mouse, which provides only 2D information.
Recent work tries to deal with this problem by allowing the user to
draw strokes on the cross-section of volume data that roughly indicate
foreground and background regions [144]. This stroke information is
used to train a classifier that is designed for segmenting voxels. One

74



drawback of this system is that it requires a lot of user interaction: the
user has to specify the cutting plane and provide several strokes to train
the classifier.

We propose a simple interface for specifying a region of interest.
The user simply delineates the ROI on the rendered image using a 2D
free form stroke. The system automatically computes the missing depth
information and returns a volumetric region inside the stroke by per-
forming segmentation inside of the stroke. The user no longer needs to
manually specify foreground and background constraints in 3D space.
This chapter describes the user interface and the implementation details
of our prototype system. We also show some segmentation examples on
the real-world dataset.

6.2 User interface

We first describe the system from the user’s point of view. After the
user loads a volumetric model, the system renders it using a traditional
volume rendering method. Here the user can apply any rendering tech-
niques to enhance the appearance of the model. Our system currently
allows the user to modify an opacity transfer function, a color transfer
function, and a gradient enhancement function [88]. The user can inter-
actively change the view direction, scale, and these transfer functions,
to locate a target ROI in the volume.

To select a ROI, the user simply traces at least a part of the ROI’s
contour using a 2D freeform stroke on the screen (Figure 6.1b). We
currently assign dragging of the left mouse button down to drawing
freeform strokes. The current implementation requires that the user
traces the contour in a clockwise direction. In other words, the right
hand side of the stroke’s drawing direction is recognized as the target
region. The system shows hatching along the stroke to indicate this
constraints. The system automatically computes the depth of the stroke
so that the stroke is on a region boundary in the 3D space and applies
segmentation based on the fact that right hand side of the 3D stroke is
inside of the region. Finally, the system returns a volumetric region as
either voxels in the volume (Figure 6.1c) or boundary surface computed
by the Marching Cubes algorithm [90] (Figure 6.7). The algorithm is
based on an assumption that the user’s stroke closely traces the contour
of the ROI. Concequently, it may fail if the stroke is far away from the
contour or if the contour is too fuzzy.

75



Our current system supports two types of strokes: open and closed
strokes. If the distance between both ends is close (20 pixels in our cur-
rent implementation), the system automatically connects the end points
and processes it as a closed stroke. Otherwise, the stroke is treated as
open. Closed strokes are useful when the entire boundary is visible and
open strokes are useful when part of boundary is hidden from the user.

6.3 Algorithm

6.3.1 From 2D freeform stroke to 3D path

Our algorithm first converts the 2D stroke on the screen into a 3D
path by adding depth information. We assume that the ROI is visually
distinct and the user follows its contour. If this assumption is valid, the
3D path should be close to the silhouette of the ROI. In other words, the
gradient vector of the volume data near the 3D stroke should be almost
perpendicular to the view direction. We find such 3D path as follows.

1. Sweep the 2D freeform stroke along the depth direction to create a
3D curved surface (Figure 6.2a). The sweep extent is set to cover
the entire volume. This curved surface is called the sweep surface.

2. Parameterize the sweep surface. The system assigns the x coordi-
nate axis to the depth direction and the y coordinate axis to the
direction parallel to the stroke on the screen (Figure 6.2b). That
is, x is 0 along the curved edge of the sweep surface near the cam-
era and y is 0 along the straight edge corresponding to the starting
point of the stroke.

3. Set sampling points on the sweep surface. Sampling points are
lattice points in the parameter space. We set the interval of the
lattice as 0.3% of the diameter of the volume data’s bounding
sphere1. In the following context, each lattice point is denoted by
Lij (i, j are indices along the x and y directions in the parameter
space where 1 ≤ i ≤ Xmax, 1 ≤ j ≤ Ymax.).

4. On each lattice point Lij , compute Sij =| Nij · Gij | where Nij is
a unit normal vector while Gij is a unit volume gradient (Figure

1Strictly speaking, this parameterization is not uniform if we use perspective trans-
formation. The space is slightly stretched in the y direction where x = 1.

76



6.2c). Sij is called a silhouette coefficient, which indicates how
much the point looks like a silhouette from the current viewpoint.

The volume gradient Gij is computed as follows. If the original
data contains color channels, the system first converts the color
value to a grayscale value that represents the perceptual bright-
ness of the color using the standard equation Gray = Alpha ×
(0.299 × Red + 0.587 × Green + 0.114 × Blue) [123]. If the vol-
ume renderer filters the original data (eg. by the opacity and color
transfer functions), the post-filtered color should be used because
we assume the user wants to select a visually distinct structure
in the current rendered image. Furthermore, to handle the user’s
imprecise input stroke and to suppress the effect of noise, the sys-
tem computes Gij from a blurred version of the original data. Any
kind of blur filter can be used. We chose a discrete approximation
of The Gaussian filter. The radius R of the filter in the data’s co-
ordinate system is matched to the extent of stroke’s error margin
in the screen coordinate system2. The stroke’s error margin is set
as 5 pixels in our implementation. To blur and differentiate the
data at the same time, we convolve the data with the derivative
of a blur filter. We construct our blur/differential filter kernel by
first computing a blur filter and taking the forward difference along
the x direction. The result can be immediately used for the y, z

directions by just rotating by 90 degrees.

5. The problem of computing the depth of the user-drawn 2D stroke
is now the problem of finding a path in the parameter space that
starts from a point on the edge y = 1 and ends at a point on the
edge y = Ymax where the sum of the silhouette coefficients along
the path is maximized (Figure 6.2d). Since this path has only one
x value for each y, it is represented as a function x = f(y). To
maintain the continuity of the path, we impose the condition that
| f(yi) − f(yi+1) |≤ c where c is an integer constant value that
controls the continuity of the path. We currently use c = 1. We
introduce an additional condition of | f(y1) − f(ymax) |≤ c for a
closed stroke. We use dynamic programming to solve this problem
[21]. The optimal path on the parameter space is then converted
to a 3D path by connecting the corresponding 3D lattice points

2Strictly speaking, R should be dependent on the depth in perspective projection.
However, we use a constant value computed at the center of the voxels.

77



(Figure 6.2e). The matrix Sij and the optimal path for Figure 6.1
is shown in Figure 6.3.

(a) (b) (c)

(d) (e)

Figure 6.2: From a 2D stroke to a 3D path. (a) Construction of the sweep
surface. (b) Parameterization of the sweep surface. (c) Computation of
a silhouette coefficient. (d) Finding the optimal path. (e) Resulting 3D
path.

6.3.2 Generating constraints and segmentation

The next task is to generate constraints to guide the segmentation.
We currently use Nock et al.’s region merging algorithm [103] for seg-
mentation. It takes a set of constraint points that specify foreground
and background regions as input and separates the volume into a fore-
ground region and a background region that contain the corresponding
constraints. The constraints can be directly used for other segmentation
algorithms such as those which use Graphcut technique [87]. We gen-
erate the constraints by offsetting the 3D path. The offset direction D

is obtained simply by computing a cross-product of the view vector and
the tangent vector of the path (Figure 6.4a). The displacement extent e

is proportional to the radius of the blur kernel R computed in the previ-
ous section, therefore, it is also proportional to the stroke’s error margin
(e = 2R, in our implementation). Each point in the 3D path is offset
by ±e D

|D| and the points on the right hand side become foreground con-

78



Optimal path

Figure 6.3: Silhouette coefficient matrix and computed optimal path of
Figure 6.1.

straints and those on the left hand side become background constraints
(Figure 6.4b). Constraints generated for Figure 6.1 are shown in Figure
6.5.

(a) (b) (c)

Figure 6.4: Constraint locations

We perform the actual volume segmentation using these constraints.
If the user-given stroke is a closed stroke, only those voxels inside of the
sweep surface are returned.

6.4 Results

We applied our technique to several data sets. Figure 6.6 shows an
example of a high-potential iron protein dataset. Note that our system
works even when only a part of the target region is visible (Figure 6.6b).
We also applied our system to color data (Figure 6.7). We captured this

79



Figure 6.5: Constraints generated for Figure 6.1

full color volumetric data using the slicer system developed by Ogawa
et al. [105] (Figure 6.8). This slicer can cut a 3cm× 5cm× 2cm frozen
in OCT compound or paraffin-embedded subject into 10µm thick slices.
The green matter in Figure 6.7 is OCT compound and the slice interval
for the chocolate crisp data is 42µm thick.

6.5 Discussions

In this chapter, we showed a successful example of using informa-
tion on the intrinsic structure of target data to reduce user intervention.
The objective of our system is to extract the ROI from existing (unseg-
mented) volume data. The application domains of this technique are
countless. For example, Tzeng. et al. showed that segmentation (ac-
cording to them, classification) is an important information to control
browsing parameters such as the transfer functions [138]. McGuffin et al.
proposed a set of interesting ideas to interactively explore pre-segmented
volumetric data [95].

Although our system works for many real-world examples, there are
several cases in which our system does not work properly. For example, if
the ROI is not round near the 3D stroke, generated positive constraints
can miss the ROI. Another limitation is that when two objects have
almost the same contour location from one viewpoint, the system can

80



(a)

(b)

Figure 6.6: An application to a 663 high-potential iron protein data.
The segmented region is rendered as opaque, red voxels.

only carve out one of them. In addition, our system does not have a
mechanism to modify failed result. For future work, we want to add a
user interface for fixing segmentation errors. We are also seeking a way to
apply this technique to surface graphics by using implicit representation
of an object.

81



(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Application to a chocolate crisp dataset(126× 89× 53, color
data). The opacity transfer function is applied to the original data (a)
to make the almond distinguishable (b). When the user draws a stroke
(c), the almond region is segmented and rendered as a surface (d). The
surface color is set to the mean color of the selected region. The user
can also pick small masses (e,f).

82



Figure 6.8: A cutting device

83



Chapter 7

Interacting with volumes

Figure 7.1: Food model created by our system.

This chapter presents an interactive system that enables the user
to cut 3D food models using free form strokes and a knife controlled by
standard mouse operations. We try to show how volume graphics have
potential to produce new kinds of interactive contents and convince the
readers that volume graphics may open up the new age of computer
graphics.

Cutting is one of the most primary interactions with volume data.
Actually, as we have shown in Chapter 4, well-designed cross-sectional
images convey an idea of volumetric structures, although the cross-
section is 2D. Therefore, it is important to explore various cutting op-
erations. Most previous systems, however, just provide planar cuts and
no intelligent interface support was provided. Here we pay notice to
real-world cutting interaction of foods. There are a great number of
non-planar and artistic cut patterns in cooking domain. We designed a
new cut interface by which the user can easily create artistic food models
using simple mouse operations. Our system allows the user to cut along
a surface of an object and also a part of a model is deformed, if desired.
We show various models created by only cutting an original food model.
Currently this is just a cooking interaction. However, we believe that

84



we can further apply these cutting interaction ideas to general volume
datasets.

7.1 Background

The progress of 3D CG technology produced a great number of
unique and interesting contents. Accordingly, the noble user interfaces
for such contents are also proposed. However, the standard input device
equipped on a standard PC is a mouse, which essentially inputs only 2D
information. Therefore, in general, it is difficult to interact with a 3D
space.

Interacting with volume data is especially problematic since the di-
mension of such data is higher than that of surface models. There are
mainly two way to browse volume data. One is volume rendering and
the other is cutting the target and observing the cross-section. Vol-
ume rendering is a well-studied topic and there are many sophisticated
algorithms for effective control of browsing parameters [114]. We are
more interested in cutting volume data because there are surprisingly
few works tried to explore this interaction, regardless of its importance.
The existing systems are not sufficient for practical use since some re-
quires predefinition of the cut geometry [150], while another requires a
special device [61].

We are currently working on a new CG educational content that
mainly target at foods and cooking. The objective of this project is to
let the user to cook in a computer and enjoy observing the dynamically
changing appearance of foodstuff. We chose this application domain
since it requires variety of cutting patterns. Food cutting has a long
history and there are a great number of artistic and surprisingly com-
plicated cutting patterns using only one or two knives (Figure 7.2). We
believe exploring this domain will eventually produce fairly intuitive user
interface since this is one of the most daily activities.

We introduce several interface ideas and show that various cutting
operations are possible by manipulating a standard mouse. The user can
intuitively cut the target model by moving a knife in the system. The key
ideas are: (1) cutting along the surface of the model, (2) controlling the
extent of knife motion, and (3) deformation of the model. We obtained
these ideas from observing the usage of a knife for real-world cooking
[4].

85



Figure 7.2: An example of complicated cutting pattern

Figure 7.3: Cutting by a freeform stroke

7.2 User interface

First of all, the user can cut the model by a freeform stroke [68](Figure
7.3).

Our new cutting interaction supports variety of patterns by manip-
ulating a knife. Since our system has high degree freedom, we split the
whole process into several steps. We explain each in turn. For ease of
explanation, we define a local coordinate system for a knife. We set the
x axis as the orientation of the handgrip and the y axis as the orientation
of the blade (direction of the knife motion) (Figure 7.4). “Clicking a but-
ton” means pushing down the button and release the button instantly.
“Pressing a button” means pushing down the button but keep pushing.
Stopping “pressing a button” is “releasing a button”. “Dragging” is the
motion of a mouse while pressing a button.

86



Figure 7.4: Local coodinate system of a knife

Figure 7.5: Putting a knife (1)

Putting a knife

The user first puts a knife on the target model. There are two ways
to do this. One is to click the left button of the mouse on the model.
The other is to press the left button on the model, wait a while, drag,
and then release.

The first method results in the knife to be put as Figure 7.5. The x

axis of the knife is upward and the y axis goes the viewer’s view direction.
An animation is added to supply a feedback that the object is a knife.

The orientation of the knife can be modified by the second method
through the dragging operation after waiting. The x-y plane of the
knife is visualized as a translucent plane to supply the feedback of the

Figure 7.6: Putting a knife (2)

87



Figure 7.7: Dragging a knife

Figure 7.8: Skin peel mode (left) and normal mode (right)

orientation of the knife (Figure 7.6). When the user releases the button,
the orientation of the knife is fixed.

Moving a knife

Next, the user moves the knife by left-dragging it (Figure 7.7). If
the knife is put by left click in the previous step, the model and the knife
should be rotated beforehand by right-dragging since the y axis of the
knife is parallel to the view direction.

Internally, there are two modes for the knife motion. If the initial y

direction of the knife goes close to the surface of the model, the mode
becomes a special mode call “skin peel mode”. Otherwise, the mode is
normal (Figure 7.8). The blade goes straight in the normal mode while
it follows the surface of the model (Figure 7.9). However, the orientation
of the x axis does not change.

88



Normal mode

Skin peel mode

Figure 7.9: Knife motion of each mode (top view)

Deformation (Optional)

If desired, the cut model can be deformed. If the mouse motion is
stopped while dragging (Figure 7.10(a,b)), the model is snicked along
the knife’s motion path and the system goes into “deformation” mode
(Figure 7.10(c)).

If the user moves the mouse again, a part of the model is deformed
(Figure7.10(d)). If the mouse is dragged along the positive y direction
of the knife, the closer part of the snicked model is deformed. Otherwise
the farther part is deformed. Figure 7.10(e) is a different view of Figure
7.10(d).

Completion of cut

If the left mouse button is released, the cutting sequence is com-
pleted. If the model is split into two parts, one of them is thrown away
(Figure 7.11). In skin peel mode and no deformation is performed, thin-
ner part is automatically thrown away. Cutting by free form stroke
results in the left side of the stroke to be thrown away [68].

89



(a) (b) (c)

(d) (e)

Figure 7.10: Deformation

Figure 7.11: Removing a part

7.2.1 Implementation

We implemented our system using C++ and OpenGL. Rendering is
performed by a triangular mesh and CSG algorithm is used for cutting
the mesh model [64]. There are several ways to generate volumetric
cross-section. We used several models for this purpose, including pseudo
volumetric data [108](Chapter 4) and segmented scan data (Chapter 5
and 6).

Deformation algorithm

The deformation algorithm is as follows:

• When the user stops the mouse motion, vertices on the newly
created cross-section is rotated around the blade of the knife at

90



that moment. The rotation angle is proportional to the distance
from the axis (Figure 7.10(e)).

• Move other vertices. For each of other vertices, find the closest
vertex on the cross-sectional plane and apply the same rotation of
the found vertex.

Computing the knife motion path in skin peel mode

Computing the knife motion path in skin peel mode is not very
straightforward. Basically the knife should follow the surface of the
object. But if we have a closer look, we observe that the blade first runs
from the surface to some depth, then moves parallel to the surface, and
finally goes up to the surface. To generate such motion, we first generate
a binary image using the following algorithm.

1. When the knife it put(Figure 7.12(a)), render the scene into off-
screen buffer from the viewpoint where the x axis of the knife goes
parallel to the view vector and the y axis goes right hand (Figure
7.12(b). The knife is not rendered in practical).

2. Divide the image into foreground and background (Figure 7.12(c)).

3. Choose one of the upper bound or lower bound of the foreground,
which is closer to the knife and let the height difference r (Figure
7.12(d)). If r is larger than user-defined threshold value, the cut
mode is normal. In this case, the knife just goes straight. Other-
wise, go to the next step.

4. Erode1 the foreground of the binary image by a radius r circle
(Figure 7.12(e,f)). The foreground shape shrinks by r.

This binary image is computed when the knife is put. When the user
drags the knife, the knife moves straight until the blade touches the edge
of the foreground shape and then follows the outline of the foreground
(Figure 7.12(g)).

If the user release the mouse button, the system has to generate
the remaining path. Since the knife follows the contour of the eroded
surface, the blade must be inside of the object. We must make sure
that the knife robustly split the object into two parts and the stroke

1Morphology operator.

91



(a) (b) (c)

Blade height
Upper bound

r

(d) (e) (f) (g)

Figure 7.12: Knife path computation

is smooth. The system first attempts to move the knife straight ahead
and see if the blade goes outside of the model. We search until the knife
moves 4r. If the blade goes outside, this motion is adopted. Otherwise
the system adds a circular arc whose radius is r, at the end of the knife
path. The above-mentioned procedure generates smooth and splitting
path (Figure 7.12(g)).

7.2.2 Results

Using our system, we could easily create models shown in Figure
7.13. As a reference, we also list pictures of real-world foodstuffs. The
snapshot of our contents are shown in Figure 7.14. Figure 7.14 left
shows an educational content that works with Macromedia Flash, aiming
at elementary school students. Figure 7.14 left is a so-called “cutting
game”. The user has to create the target shape shown in the bottom left
window within some amount of time show in in the upper left window.
Such games helps quickly study our user interface.

7.3 Discussions

We proposed an user interface to freely cut a model using a standard
mouse. The proposed operations such as cutting along the surface, con-
trolling the cut extent, and deformation extended the variety of possible

92



Figure 7.13: Results. The upper two rows are comparison to real-world
foodstuffs. The left is the real models)

cut patterns. We are interested in further extension of the proposed user
interface and application to more general models such as CT-scanned
data or simulated data.

93



Figure 7.14: Application examples

94



Chapter 8

Conclusion

In this dissertation, we proposed several tools that make volume graphics
tractable for end users. We mainly concentrate on modeling volumetric
data, since we believe modeling user interface is the main obstacle for
popularization of volume graphics.

First, we proposed a sketch-based shape modeler that naturally han-
dles topological change through intuitive user interface. The easiness of
implementation is mainly due to its underlying volumetric representa-
tion that automatically maintains solidity of the shape. In this work,
we tried to emphasize that volumetric representation has potential to
provide simple solution for traditional problem such as self-intersection.
One of the main obstacles of volume graphics has been its high compu-
tational cost. However, because of the rapid progress of both software
and hardware technologies, problems of storage and processing time are
not as critical as they used to be. Therefore, we believe that we should
be more ready to use volumetric graphics than before for simple and
natural processing.

Second, we proposed the volumetric illustration system that focuses
on cutting interaction and ignores other aspects of volumetric objects
such as rendering with transparency or volumetric deformation. Instead
of authoring “real” volumetric data, this work utilizes 2D example im-
ages and processes the images when the user cuts the object using the
texture synthesis technique. For most 3D graphics programmers and de-
signers, 2D reference images are much easier to obtain than 3D reference
volumes. Therefore, this work makes it possible to utilize volumetric con-
tents for those who do not have access to special 3D capturing devices.
This system is efficient not only because necessary storage is small but
also because the user interface is simplified because of the 2D nature of

95



input data.
Next, we proposed new systems to segment volume data. Medi-

cal scanning devices are the main source of explicit volume data today.
The data are provided as a set of cross-sectional images and stored in
regularly aligned samples (voxels), which do not have any regional in-
formation, thereby further processing is difficult. Voxel segmentation is
an image processing algorithm to divide raw volume data into several
semantic elements. Since volume data is purely a 3D entity, it is not
straightforward to specify information necessary for segmentation. We
proposed two methods to support this process. One is based on manu-
ally segmenting sparse set of cross-sectional images and then construct
3D regions. We proposed a method to automatically enumerate all pos-
sible correspondence of contours and then the user selects the desired
pattern from the list. The other proposes a new interface that allows
the user to directly work on projected image on the screen. By just
tracing the outline of the target region, point constraints are generated
and by applying an existing segmentation technique, the target region is
carved out. The significance of these works is that we now have a con-
venient tool to utilize volume data, since segmentation leads numerous
applications such as fast rendering or deformation.

Finally we showed one possible application of volumetric computer
graphics, which explores a variety of cutting patterns for volumetric
models. Although cutting is one of the most important methods to
visualize volumetric structure, there have not been much work that spe-
cially explore cutting techniques. We tried to explore cooking interaction
because in cooking domain, there are a great number of complicated and
artistic cutting patterns that are possible with only planar knives. We
believe that the proposed idea for cutting is applicable to more generic
volumetric data such as CT-scanned data.

8.1 Significance of volume graphics

Throughout the dissertation, we tried to propose easy-to-use vol-
umetric systems and to show potential abilities which volumetric data
processing have. Our aim is not to replace current graphics systems by
volumetric graphics. Instead, we believe that volumetric graphics can
generate more realistic and plausible behavior of objects with minimum
burden to both graphics engineers and designers, because all real-world
objects have volumetric structure. Computer graphics is essentially an

96



appearance simulation of the real-world. Ideally, computer generated
scenes should be animated by physical simulation or its approximation
and rendered with lighting simulation. Therefore, if we pursue supreme
reality to computer graphics, we unavoidably need to introduce volumet-
ric data representation. We believe that our works stimulate frequent
use of volumetric graphics.

8.2 Future direction

We hope that our systems convince the reader that volumetric graph-
ics have potential to solve traditional problems easily and broaden ap-
plication domains. However, this work is not a complete solution for
all problems of volumetric graphics. In this Section, we discuss several
unsolved problems that can make volume graphics still difficult.

8.2.1 Modeling of explicit volume data

Although we propose several tools to author volumetric data, a
method to generate explicit volumetric data from scratch is missing in
this dissertation. The volumetric illustration system (Chapter 4) inputs
2D images and generates 2D “volumetric” cross-sections. Although this
is a benefit from the viewpoint of necessary data amount, this cannot be
used for realistic simulation such as deformation or translucent render-
ing. Dispite the several volume modeling methods as shown in Section
2.2, we have not yet attained a complete solution.

8.2.2 Handy scanning system

Even if we have a successful method to create volumetric model from
scratch in future, the importance of scanning devices will never decrease.
It is obvious if we view the 2D case: 2D drawing software and capturing
devices such as digital cameras or image scanners are compatible because
the application is different.

Currently we do not have many channels to obtain volume data.
Medical devices such as CT scanners or MR scanners are virtually the
only source of the data. These devices are extremely expensive and
ordinary graphics designers cannot afford to buy them for their activities.
In a research level, there are some devices that scans daily objects such
as foods, small animals, and so on [105]. Unfortunately, such devices

97



still require annoying setup of the machine and fair amount of capturing
time.

There is another problem that exist in current scanning devices:
we cannot obtain the surface and the internal structure at the same
time. The success of surface graphics proves that the surface attribute
is indispensable for realistic representation of objects. Current systems
can capture only one of those (or can capture both but in separate paths,
which requires very difficult registration step afterwards.)

8.2.3 Rendering capability

Another bottleneck of the current volume graphics is that the consumer-
level graphics card can render only a small size of volume data. The
current high-end graphics card is equipped with only 256MB of video
memory, that can store approximately 4003 3D texture. If we want to
render volumetric data that is compatible with contemporary high-end
surface model, the resolution should be around 10243 or more, which
requires more than 4 gigabites. Currently, we need a special purpose
hardware to render such a large-scale dataset [113].

However, we are optimistic with this problem since the progress of
device technology is so fast. Actually, the ability of GPUs has been
progressing much faster than what Moore’s law indicates.

98



References

[1] Avs. advanced visual systems. http://www.avs.com/.

[2] Maya. In Alias systems corp. (http://www.aliaswavefront.com/).

[3] Softimage xsi. In Softimage corp. (http://www.softimage.com/).

[4] Zairyo no shitagosirae hyakka (材料の下ごしらえ百科). Syufu-to-
seikatsusya (主婦と生活社).

[5] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A new
voronoi-based surface reconstruction algorithm. In Proceedings of
the 25th annual conference on Computer graphics and interactive
techniques, pages 415–421. ACM Press, 1998.

[6] Alexis Angelidis, Pauline Jepp, and Marie-Paule Cani. Implicit
modeling with skeleton curves: Controlled blending in contact sit-
uations. In Shape Modeling International. ACM, IEEE Computer
Society Press, 2002. Banff, Alberta, Cananda.

[7] Michael Ashikhmin. Synthesizing natural textures. In Proceedings
of the 2001 symposium on Interactive 3D graphics, pages 217–226.
ACM Press, 2001.

[8] Chandrajit L. Bajaj, Fausto Bernardini, and Guoliang Xu. Au-
tomatic reconstruction of surfaces and scalar fields from 3d scans.
In SIGGRAPH ’95: Proceedings of the 22nd annual conference
on Computer graphics and interactive techniques, pages 109–118.
ACM Press, 1995.

[9] Chandrajit L. Bajaj, Valerio Pascucci, and Daniel Schikore. The
contour spectrum. In IEEE Visualization, pages 167–174, 1997.

[10] R.A. Banvard. The visible human project R©image data set from
inception to completion and beyond. In CODATA 2002: Frontiers

99



of Scientific and Technical Data , Track I-D-2: Medical and Health
Data, 2002.

[11] Pravin Bhat, Stephen Ingram, and Greg Turk. Geometric texture
synthesis by example. In Eurographics Symposium on Geometry
Processing, pages 43–46.

[12] James F. Blinn. A generalization of algebraic surface drawing.
ACM Trans. Graph., 1(3):235–256, 1982.

[13] F. Bloch, W.W. Hansen, and M. Packard. Nuclear induction. Phys.
Rev., 69:127, 1946.

[14] Jules Bloomenthal and Ken Shoemake. Convolution surfaces. In
Proceedings of the 18th annual conference on Computer graphics
and interactive techniques, pages 251–256. ACM Press, 1991.

[15] Jean-Daniel Boissonnat. Shape reconstruction from planar cross
sections. Comput. Vision Graph. Image Process., 44(1):1–29, 1988.

[16] Mark Carlson, Peter J. Mucha, and Greg Turk. Rigid fluid: ani-
mating the interplay between rigid bodies and fluid. ACM Trans.
Graph., 23(3):377–384, 2004.

[17] Wei Chen, Liu Ren, Matthias Zwicker, and Hanspeter Pfister.
Hardware-accelerated adaptive ewa volume splatting. In VIS ’04:
Proceedings of the IEEE Visualization 2004 (VIS’04), pages 67–74.
IEEE Computer Society, 2004.

[18] H. N. Christiansen and T. W. Sederberg. Conversion of complex
contour line definitions into polygonal element mosaics. In SIG-
GRAPH ’78: Proceedings of the 5th annual conference on Com-
puter graphics and interactive techniques, pages 187–192. ACM
Press, 1978.

[19] Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver
Deussen. Wang tiles for image and texture generation.
ACM Transtions on Graphics (SIGGRAPH 2003 Proceedings),
22(3):287–294, 2003.

[20] Ge Cong and Bahram Parvin. A new regularized approach for con-
tour morphing. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR2000), pages 1458–1463, 2000.

100



[21] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, Second Edition. MIT
Press, 2001.

[22] G.R. Cross and A.K. Jain. Markov random field texture models. In
Proc. IEEE Trans. Pattern Anal. Mach. Intell., volume 18, pages
25–39. IEEE Computer Society Press, 1983.

[23] Barbara Cutler, Julie Dorsey, Leonard McMillan, Matthias Müller,
and Robert Jagnow. A procedural approach to authoring solid
models. In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 302–311. ACM Press,
2002.

[24] Jeremy S. De Bonet. Multiresolution sampling procedure for anal-
ysis and synthesis of texture images. In Proceedings of the 24th an-
nual conference on Computer graphics and interactive techniques,
pages 361–368. ACM Press/Addison-Wesley Publishing Co., 1997.

[25] Mathieu Desbrun, Nicolas Tsingos, and Marie-Paule Cani. Adap-
tive sampling of implicit surfaces for interactive modeling and an-
imation. Computer Graphics Forum, 15(5), dec 1996. Published
under the name Marie-Paule Gascuel.

[26] Jean-Michel Dischler, Djamchid Ghazanfarpour, and R. Freydier.
Anisotropic solid texture synthesis using orthogonal 2d views.
Comput. Graph. Forum, 17(3):87–96, 1998.

[27] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Vol-
ume rendering. In Proceedings of the 15th annual conference on
Computer graphics and interactive techniques, pages 65–74. ACM
Press, 1988.

[28] David Ebert and Penny Rheingans. Volume illustration: non-
photorealistic rendering of volume models. In VIS ’00: Proceed-
ings of the conference on Visualization ’00, pages 195–202. IEEE
Computer Society Press, 2000.

[29] H. Edelsbrunner. The union of balls and its dual shape. Discrete
Comput. Geom., 13:415–440, 1995.

[30] Herbert Edelsbrunner. Algorithms in combinatorial geometry.
Springer-Verlag New York, Inc., 1987.

101



[31] Alexei A. Efros and William T. Freeman. Image quilting for tex-
ture synthesis and transfer. Proceedings of SIGGRAPH 2001,
pages 341–346, August 2001.

[32] Alexei A. Efros and Thomas K. Leung. Texture synthesis by non-
parametric sampling. In Proceedings of the International Confer-
ence on Computer Vision-Volume 2, page 1033. IEEE Computer
Society, 1999.

[33] A. B. Ekoule, F. C. Peyrin, and C. L. Odet. A triangulation
algorithm from arbitrary shaped multiple planar contours. ACM
Trans. Graph., 10(2):182–199, 1991.

[34] T. Todd Elvins. A survey of algorithms for volume visualization.
SIGGRAPH Comput. Graph., 26(3):194–201, 1992.

[35] Jerry Fails and Dan Olsen. A design tool for camera-based in-
teraction. In Proceedings of the conference on Human factors in
computing systems, pages 449–456. ACM Press, 2003.

[36] P.F. Felzenszwalb and D.P. Huttenlocher. Image segmentation
using local variations. IEEE Computer Vision and Pattern Recog-
nition, pages 98–104, 1998.

[37] Eric Ferley, Marie-Paule Cani, and Jean-Dominique Gascuel. Prac-
tical volumetric sculpting. In Proceedings of Implicit Surface ’99,
Sep 1999.

[38] Randima Fernando, editor. GPU Gems. Addison Wesley, Boston,
MA, 2004.

[39] Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and
Thouis R. Jones. Adaptively sampled distance fields: a general
representation of shape for computer graphics. In Proceedings of
the 27th annual conference on Computer graphics and interactive
techniques, pages 249–254. ACM Press/Addison-Wesley Publish-
ing Co., 2000.

[40] H. Fuchs, Z. M. Kedem, and S. P. Uselton. Optimal surface recon-
struction from planar contours. Commun. ACM, 20(10):693–702,
1977.

102



[41] I. Fujishiro, Y. Maeda, and H. Sato. Interval volume: a solid
fitting technique for volumetric data display and analysis. In VIS
’95: Proceedings of the 6th conference on Visualization ’95, page
151. IEEE Computer Society, 1995.

[42] Issei Fujishiro, Yuriko Takeshima, Taeko Azuma, and Shigeo Taka-
hashi. Volume data mining using 3d field topology analysis. IEEE
Comput. Graph. Appl., 20(5):46–51, 2000.

[43] Tinsley A. Galyean and John F. Hughes. Sculpting: an interactive
volumetric modeling technique. In Proceedings of the 18th annual
conference on Computer graphics and interactive techniques, pages
267–274. ACM Press, 1991.

[44] Allen Van Gelder and Kwansik Kim. Direct volume rendering with
shading via three-dimensional textures. In VVS ’96: Proceedings
of the 1996 symposium on Volume visualization, pages 23–ff. IEEE
Press, 1996.

[45] Bruce Gooch and Amy Gooch. Non-Photorealistic Rendering. A.
K. Peters, 2001.

[46] H. Nishimura H., M. Hirai, T. Kawai, T. Kawata, I. Shirakawa,
and K. Omura. Object modelling by distribution function and
a method of image generation. The Transactions of the Insti-
tute of Electronics and Communication Engineers of Japan, J68-
D(4):718–725, 1985. in Japanese, translated into English by Takao
Fujuwara.

[47] Paul Haeberli. Paint by numbers: abstract image representations.
In SIGGRAPH ’90: Proceedings of the 17th annual conference
on Computer graphics and interactive techniques, pages 207–214.
ACM Press, 1990.

[48] T. Haig, Y. Attikiouzel, and M. D. Alder. Border marriage: Match-
ing of contours of serial sections. In IEE Proceedings I, 138(5),
pages 371–376, 1991.

[49] Pat Hanrahan and Paul Haeberli. Direct wysiwyg painting and
texturing on 3d shapes. In Proceedings of the 17th annual con-
ference on Computer graphics and interactive techniques, pages
215–223. ACM Press, 1990.

103



[50] R. Haralick. Statistical and structural approaches to texture. In
Proc. IEEE, volume 67, pages 786–804. IEEE Computer Society
Press, 1979.

[51] Lowell Harris, R.A. Robb, T.S. Yuen, and E.L. Ritman. Non-
invasive numerical dissection and display of anatomic structure
using computerized x-ray tomography. In Proceedings of SPIE
152, pages 10–18, 1978.

[52] John C. Hart. Ray Tracing Implicit Surfaces - Modeling, Visualiz-
ing, and Animating Implicit Surfaces (course note in SIGGRAPH
93). 1993.

[53] P. Hastreiter and T. Ertl. Fast and interactive 3D–segmentation of
medical volume data. In H. Niemann, H.-P. Seidel, and B. Girod,
editors, Proceedings of Workshop on Image and Multi-dimensional
Digital Signal Processing (IMDSP), 1998.

[54] Helwig Hauser, Lukas Mroz, Gian-Italo Bischi, and Eduard Gr
ler. Two-level volume rendering-fusing mip and dvr. In VISUAL-
IZATION ’00: Proceedings of the 11th IEEE Visualization 2000
Conference (VIS 2000). IEEE Computer Society, 2000.

[55] David J. Heeger and James R. Bergen. Pyramid-based texture
analysis/synthesis. In Proceedings of the 22nd annual conference
on Computer graphics and interactive techniques, pages 229–238.
ACM Press, 1995.

[56] Henk J.A.M. Heijmans. Connected morphological operators for
binary images. Comput. Vis. Image Underst., 73(1):99–120, 1999.

[57] Gabor T. Herman, Jingsheng Zheng, and Carolyn A. Bucholtz.
Shape-based interpolation. IEEE Comput. Graph. Appl., 12(3):69–
79, 1992.

[58] G.T. Herman and H.K. Liu. Three-dimensional display of human
organs from computed tomograms. Computer Graphics and Image
Processing, 9:1–21, 1979.

[59] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Cur-
less, and David H. Salesin. Image analogies. In Proceedings of
the 28th annual conference on Computer graphics and interactive
techniques, pages 327–340. ACM Press, 2001.

104



[60] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and
Tosiyasu L. Kunii. Topology matching for fully automatic sim-
ilarity estimation of 3d shapes. In SIGGRAPH ’01: Proceedings
of the 28th annual conference on Computer graphics and interac-
tive techniques, pages 203–212. ACM Press, 2001.

[61] Ken Hinckley, Randy Pausch, John C. Goble, and Neal F. Kassell.
Passive real-world interface props for neurosurgical visualization.
In Conference companion on Human factors in computing systems,
page 232. ACM Press, 1994.

[62] K.H. Hoehne and R. Bernstein. Shading 3d-images from ct using
gray-level gradients. In IEEE Transactions on Medical Imaging,
pages 45–47, 1986.

[63] Kenneth E. Hoff III, John Keyser, Ming Lin, Dinesh Manocha,
and Tim Culver. Fast computation of generalized Voronoi dia-
grams using graphics hardware. Computer Graphics, 33(Annual
Conference Series):277–286, 1999.

[64] C.K. Hoffman. Geometric and Solid Modeling. Morgan Kaufmann
Pub., 1989.

[65] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald,
and Werner Stuetzle. Surface reconstruction from unorganized
points. Computer Graphics, 26(2):71–78, 1992.

[66] G.N. Hounsfield. Computerized transverse axial scanning (tomog-
raphy). Br.J. Radiol, 246(1):1016–1022, 1973.

[67] Godfrey Newbold Hounsfield. Computerized transverse axial scan-
ning (tomography). 1. description of system. In Br J Radiol, pages
46: 1016–1022, 1973.

[68] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy:
a sketching interface for 3d freeform design. In Proceedings of
the 26th annual conference on Computer graphics and interactive
techniques, pages 409–416. ACM Press/Addison-Wesley Publish-
ing Co., 1999.

[69] Robert Jagnow, Julie Dorsey, and Holly Rushmeier. Stereologi-
cal techniques for solid textures. ACM Transactions on Graphics
(Proc. Siggraph 2004), 23(3):329–335, 2004.

105



[70] James T. Kajiya and Brian P Von Herzen. Ray tracing volume
densities. In SIGGRAPH ’84: Proceedings of the 11th annual con-
ference on Computer graphics and interactive techniques, pages
165–174. ACM Press, 1984.

[71] Robert D. Kalnins, Lee Markosian, Barbara J. Meier, Michael A.
Kowalski, Joseph C. Lee, Philip L. Davidson, Matthew Webb,
John F. Hughes, and Adam Finkelstein. Wysiwyg npr: drawing
strokes directly on 3d models. In Proceedings of the 29th annual
conference on Computer graphics and interactive techniques, pages
755–762. ACM Press, 2002.

[72] Armin Kanitsar, Rainer Wegenkittl, Dominik Fleischmann, and
Meister Eduard Gröller. Advanced Curved Planar Reforma-
tion: Flattening of Vascular Structures. In IEEE Visualization
2003, pages 43–50, October 2003. human contact: technical-
report@cg.tuwien.ac.at.

[73] Olga Karpenko, John F. Hughes, and Ramesh Raskar. Free-form
sketching with variational implicit surfaces. Computer Graphics
Forum, 21(3):585–594, September 2002.

[74] Arie Kaufman, Rick Avila, Sarah Gibson, Bill Lorensen, Hanspeter
Pfister, Milos Sramek, and J. Edward Swan II. Volume Graphics
(course notes for Siggraph 99 conference). 1999.

[75] E. Keppel. Approximating complex surfaces by triangulation of
contour lines. IBM Journal of Research and Development, 19(1):2–
11, 1975.

[76] J. Kniss, G. Kindlmann, and C. Hansen. Interactive volume ren-
dering using multi-dimensional transfer functions and direct ma-
nipulation widgets. In Proceedings of IEEE Visualization ’01,
pages 255–262. IEEE, 2001.

[77] Joe Kniss, Simon Premoze, Charles Hansen, and David Ebert.
Interactive translucent volume rendering and procedural modeling.
In Proceedings of the conference on Visualization ’02, pages 109–
116. IEEE Computer Society, 2002.

[78] A. König, H. Doleisch, and E. Gröller. Multiple views and magic
mirrors—fmri visualization of the human brain. In Technical Re-

106



port TR-186-2-99-08, Inst. of Computer Graphics and Algorithms,
Vienna Univ. of Technology, Feb. 1999., 1999.

[79] Jens Krüeger and Rüediger Westermann. Acceleration techniques
for gpu-based volume rendering. In Proceedings IEEE Visualiza-
tion 2003, 2003.

[80] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron
Bobick. Graphcut textures: image and video synthesis using
graph cuts. ACM Transactions on Graphics (Proc. Siggraph 2003),
22(3):277–286, 2003.

[81] Philippe Lacroute and Marc Levoy. Fast volume rendering using
a shear-warp factorization of the viewing transformation. In SIG-
GRAPH ’94: Proceedings of the 21st annual conference on Com-
puter graphics and interactive techniques, pages 451–458. ACM
Press, 1994.

[82] Ares Lagae, Olivier Dumont, and Philip Dutré. Geometry synthe-
sis. In Siggraph 2004 technical sketch, 2004.

[83] Adam Lake, Carl Marshall, Mark Harris, and Marc Blackstein.
Stylized rendering techniques for scalable real-time 3d anima-
tion. In Proceedings of the 1st international symposium on Non-
photorealistic animation and rendering, pages 13–20. ACM Press,
2000.

[84] Robert S. Laramee, Daniel Weiskopf, Jurgen Schneider, , and Hel-
wig Hauser. Investigating swirl and tumble flow with a comparison
of visualization techniques. In VIS ’04: Proceedings of the confer-
ence on Visualization ’04, pages 51–58. IEEE Computer Society,
2004.

[85] P.C. Lauterbur. Image formation by induced local interactions:
examples employing nuclear magnetic resonance. Nature, 242:190–
191, 1973.

[86] Marc Levoy. Display of surfaces from volume data. IEEE Comput.
Graph. Appl., 8(3):29–37, 1988.

[87] Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum. Lazy
snapping. ACM Transactions on Graphics (Proc. Siggraph 2004),
23(3):303–308, 2004.

107



[88] Barthold Lichtenbelt, Randy Crane, and Shaz Naqvi. Introduc-
tion to Volume Rendering (Hewlett-Packard Professional Books).
Prentice Hall, 1998.

[89] C. Loop. Smooth subdivision surfaces based on triangles. Master’s
thesis, University of Utah, Department of Mathematics, 1987.

[90] William E. Lorensen and Harvey E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm. In Proceedings of
the 14th annual conference on Computer graphics and interactive
techniques, pages 163–169. ACM Press, 1987.

[91] Aidong Lu, Christopher J. Morris, David Ebert, Penny Rheingans,
and Charles Hansen. Non-photorealistic volume rendering using
stippling techniques. In VIS ’02: Proceedings of the conference on
Visualization ’02. IEEE Computer Society, 2002.

[92] Eric B. Lum and Kwan-Liu Ma. Lighting transfer functions using
gradient aligned sampling. In VIS ’04: Proceedings of the IEEE
Visualization 2004 (VIS’04), pages 289–296. IEEE Computer So-
ciety, 2004.

[93] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson,
J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall,
J. Seims, and S. Shieber. Design galleries: a general approach to
setting parameters for computer graphics and animation. In SIG-
GRAPH ’97: Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques, pages 389–400. ACM
Press/Addison-Wesley Publishing Co., 1997.

[94] Kevin T. McDonnell and Hong Qin. Dynamic sculpting and anima-
tion of free-form subdivision solids. In Proceedings of the Computer
Animation, page 126. IEEE Computer Society, 2000.

[95] M.J. McGuffin, L. Tancau, and R. Balakrishnan. Using deforma-
tions for browsing volumetric data. In Proceedings of the confer-
ence on Visualization ’03, pages 401–408. IEEE Computer Society,
2003.

[96] Shinji Mizuno, Minoru Okada, and Jun ichiro Toriwaki. Virtual
sculpting and virtual woodcut printing. The Visual Computer,
14(2):39–51, 1998.

108



[97] Lukas Mroz. Real-Time Volume Visualization on Low-End Hard-
ware. Vienna University of Technology, 2001.

[98] James C. Mullikin. The vector distance transform in two and three
dimensions. CVGIP: Graph. Models Image Process., 54(6):526–
535, 1992.

[99] Andrew Nealen and Marc Alexa. Hybrid texture synthesis. In Pro-
ceedings of the 14th Eurographics workshop on Rendering, pages
97–105. Eurographics Association, 2003.

[100] Michael Meißner, Ulrich Hoffmann, and Wolfgang Straßer. En-
abling classification and shading for 3d texture mapping based
volume rendering using opengl and extensions. In VIS ’99: Pro-
ceedings of the conference on Visualization ’99, pages 207–214.
IEEE Computer Society Press, 1999.

[101] Michael Meißner, Jian Huang, Dirk Bartz, Klaus Mueller, and
Roger Crawfis. A practical evaluation of popular volume rendering
algorithms. In VVS ’00: Proceedings of the 2000 IEEE symposium
on Volume visualization, pages 81–90. ACM Press, 2000.

[102] Fabrice Neyret and Marie-Paule Cani. Pattern-based texturing re-
visited. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques (Proc. Siggraph 99), pages 235–
242. ACM Press/Addison-Wesley Publishing Co., 1999.

[103] R. Nock and F. Nielsen. Grouping with bias revisited. In A. Bo-
bick L.-S. Davis, R. Chellapa, editor, IEEE International Confer-
ence on Computer Vision and Pattern Recognition, pages 460–465.
IEEE CS Press, 2004.

[104] Richard Nock and Frank Nielsen. Statistical region merging. IEEE
Trans. Pattern Anal. Mach. Intell., 26(11):1452–1458, 2004.

[105] Y. Ogawa, T. Ohtani, J. Sugiyama, S. Hagiwara, M. Kokubo,
K. Kudoh, and T. Higuchi. Three dimensional visualization of
internal constituents in a rice grain. ASAE/CSAE-SCGR Annual
International Meeting, (993059), 1999.

[106] A. Opalach and S. C. Maddock. An overview of implicit surfaces.
In Introduction to Modelling and Animation Using Implicit Sur-
faces, pages 1.1–1.13, 1995.

109



[107] Shigeru Owada, Frank Nielsen, Kazuo Nakazawa, and Takeo
Igarashi. A sketching interface for modeling the internal structures
of 3d shapes. In Proceedings of the 4th International Symposium
on Smart Graphics, pages 49–57. Springer-Verlag LNCS 2733, July
2003.

[108] Shigeru Owada, Frank Nielsen, Makoto Okabe, and Takeo
Igarashi. Volumetric illustration: designing 3d models with in-
ternal textures. ACM Trans. Graph., 23(3):322–328, 2004.

[109] Bradley A. Payne and Arthur W. Toga. Distance field manipula-
tion of surface models. IEEE Comput. Graph. Appl., 12(1):65–71,
1992.

[110] Hans Køhling Pedersen. A framework for interactive texturing
on curved surfaces. In Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques, pages 295–302.
ACM Press, 1996.

[111] Ken Perlin. An image synthesizer. In Proceedings of the 12th an-
nual conference on Computer graphics and interactive techniques,
pages 287–296. ACM Press, 1985.

[112] Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh Lauer,
and Larry Seiler. The volumepro real-time ray-casting system.
In SIGGRAPH ’99: Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, pages 251–260.
ACM Press/Addison-Wesley Publishing Co., 1999.

[113] Hanspeter Pfister and Arie Kaufman. Cube-4-a scalable architec-
ture for real-time volume rendering. In VVS ’96: Proceedings of
the 1996 symposium on Volume visualization, pages 47–55. IEEE
Press, 1996.

[114] Hanspeter Pfister, Bill Lorensen, Chandrajit Bajaj, Gordon Kindl-
mann, Will Schroeder, Lisa Sobierajski Avila, Ken Martin, Raghu
Machiraju, and Jinho Lee. The transfer function bake-off. IEEE
Comput. Graph. Appl., 21(3):16–22, 2001.

[115] K. Popat and R. Picard. Novel cluster-based probability model for
texture synthesis, classification, and compression. In Proceedings
SPIE visual Communications and Image Processing ’93, Boston,
1993., 1993.

110



[116] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped tex-
tures. In Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 465–470. ACM
Press/Addison-Wesley Publishing Co., 2000.

[117] Proceedings of Pacific Graphics 2002. Feature-Enhanced Visualiza-
tion of Multidimensional, Multivariate Volume Data Using Non-
photorealistic Rendering Techniques. IEEE, 2002.

[118] David Pugh. Designing solid objects using interactive sketch in-
terpretation. In Proceedings of the 1992 symposium on Interactive
3D graphics, pages 117–126. ACM Press, 1992.

[119] E.M. Purcell, H.C. Torrey, and R.V. Pound. Resonance absorption
by nuclear magnetic moments in a solid. Phys. Rev., 69:37–38,
1946.

[120] J. Radon. On the determination of functions from their integrals
along certain manifolds. In Berichte Seachsische Acad. Wiss. 69,
pages 262–271, 1917.

[121] S. P. Raya and J. K. Udupa. Shape-based interpolation of mul-
tidimensional objects. IEEE Transactions on Medical Imaging,
9(1):32–42, 1992.

[122] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl.
Interactive volume on standard pc graphics hardware using multi-
textures and multi-stage rasterization. In HWWS ’00: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graph-
ics hardware, pages 109–118. ACM Press, 2000.

[123] John C. Russ. The Image Processing Handbook Fourth Edition.
CRC Press, 2002.

[124] Takafumi Saito and Tokiichiro Takahashi. Comprehensible render-
ing of 3-d shapes. In SIGGRAPH ’90: Proceedings of the 17th an-
nual conference on Computer graphics and interactive techniques,
pages 197–206. ACM Press, 1990.

[125] Michael Shantz. Surface definition for branching, contour-defined
objects. SIGGRAPH Computer Graphics, 15(2):242–270, 1981.

111



[126] Anthony Sherbondy, Mike Houston, and Sandy Napel. Fast volume
segmentation with simultaneous visualization using programmable
graphics hardware. In Proceedings of IEEE Visualization 2003,
pages 171–176. IEEE, 2003.

[127] Jianbo Shi and Jitendra Malik. Normalized cuts and image seg-
mentation. IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888–
905, 2000.

[128] Yoshihisa Shinagawa and Tosiyasu L. Kunii. Constructing a reeb
graph automatically from cross sections. IEEE Computer Graphics
and Applications, 11(6):44–51, 1991.

[129] Yoshihisa Shinagawa and Tosiyasu L. Kunii. The homotopy model:
a generalized model for smooth surface generation from cross sec-
tional data. The Visual Computer, 7(2):72–86, 1991.

[130] Yoshihisa Shinagawa, Tosiyasu L. Kunii, and Yannick L. Ker-
gosien. Surface coding based on morse theory. IEEE Computer
Graphics and Applications, 11(5):66–78, 1991.

[131] Peter G. Sibley, Philip Montgomery, and G. Elisabeta Marai.
Wang cubes for geometry placement and video synthesis. In Sig-
graph 2004 Poster, 2004.

[132] Jos Stam. Aperiodic texture mapping. In Technical Report R046,
European Research Consortium for Informatics and Mathematics
(ERCIM), 1997.

[133] Matus Straka, Michal Cervenansky, Alexandra La Cruz, Arnold
Kochl, Milos Sramek, Eduard Groller, and Dominik Fleischmann.
The vesselglyph: Focus & context visualization in ct-angiography.
In VIS ’04: Proceedings of the IEEE Visualization 2004 (VIS’04),
pages 385–392. IEEE Computer Society, 2004.

[134] Steve Strassmann. Hairy brushes. In SIGGRAPH ’86: Proceedings
of the 13th annual conference on Computer graphics and interac-
tive techniques, pages 225–232. ACM Press, 1986.

[135] Ivan E. Sutherland. Sketchpad: A Man-Machine Graphical Com-
munication System. Ph.D. Thesis. MIT, 1963.

112



[136] Eric Tabellion and Arnauld Lamorlette. An approximate global
illumination system for computer generated films. ACM Trans.
Graph., 23(3):469–476, 2004.

[137] Shigeo Takahashi, Yuriko Takeshima, and Issei Fujishiro. Topolog-
ical volume skeletonization and its application to transfer function
design. Graphical Models, 66(1):24–49, 2004.

[138] Ikuko Takanashi, Eric Lum, Shigeru Murakin, and Kwan-Liu Ma.
Ispace: Interactive volume data classification techniques using in-
dependent component analysis. IEEE, 2002.

[139] Gabriel Taubin. A signal processing approach to fair surface de-
sign. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 351–358. ACM Press,
1995.

[140] S. M. F. Treavett and M. Chen. Pen-and-ink rendering in vol-
ume visualisation. In VIS ’00: Proceedings of the conference on
Visualization ’00, pages 203–210. IEEE Computer Society Press,
2000.

[141] Graham M. Treece, Richard W. Prager, Andrew H. Gee, and Lau-
rence H. Berman. Surface interpolation from sparse cross-sections
using region correspondence. IEEE Transactions on Medical Imag-
ing, 19(11):1106–1114, 2000.

[142] G. Turk and J.F. O’Brien. Variational implicit surfaces. In Techni-
cal Report GIT-GVU-99-15, Graphics, Visualization, and Usabil-
ity Center. Georgia Institute of Technology., 1999.

[143] Greg Turk. Texture synthesis on surfaces. In Proceedings of the
28th annual conference on Computer graphics and interactive tech-
niques, pages 347–354. ACM Press, 2001.

[144] Fan-Yin Tzeng, Eric B. Lum, and Kwan-Liu Ma. A novel interface
for higher-dimensional classification of volume data. In Proceedings
of IEEE Visualization 2003, pages 505–512. IEEE, 2003.

[145] John Viega, Matthew J. Conway, George Williams, and Randy
Pausch. 3d magic lenses. In Proceedings of the 9th annual ACM
symposium on User interface software and technology, pages 51–
58. ACM Press, 1996.

113



[146] Ivan Viola, Armin Kanitsar, and Meister Eduard Gröller.
Importance-driven volume rendering. In Proceedings of IEEE Vi-
sualization’04, pages 139–145, 2004.

[147] Sidney W. Wang and Arie E. Kaufman. Volume sculpting. In
Proceedings of the 1995 symposium on Interactive 3D graphics,
pages 151–157. ACM Press, 1995.

[148] Li-Yi Wei. Texture Synthesis by Fixed Neighborhood Searching.
Ph.D. Thesis. Stanford University, 2001.

[149] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-
structured vector quantization. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, pages
479–488. ACM Press/Addison-Wesley Publishing Co., 2000.

[150] Daniel Weiskopf, Klaus Engel, and Thomas Ertl. Volume clipping
via per-fragment operations in texture-based volume visualization.
In Proceedings of the conference on Visualization ’02, pages 93–
100. IEEE Computer Society, 2002.

[151] William Welch and Andrew Witkin. Free-form shape design us-
ing triangulated surfaces. In SIGGRAPH ’94: Proceedings of the
21st annual conference on Computer graphics and interactive tech-
niques, pages 247–256. ACM Press, 1994.

[152] Lee Westover. Footprint evaluation for volume rendering. In SIG-
GRAPH ’90: Proceedings of the 17th annual conference on Com-
puter graphics and interactive techniques, pages 367–376. ACM
Press, 1990.

[153] Andrew P. Witkin and Paul S. Heckbert. Using particles to sample
and control implicit surfaces. In Proceedings of the 21st annual
conference on Computer graphics and interactive techniques, pages
269–277. ACM Press, 1994.

[154] Qing Wu and Yizhou Yu. Feature matching and deformation for
texture synthesis. ACM Transactions on Graphics (Proc. Siggraph
2004), 23(3):364–367, 2004.

[155] Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Data structure
for soft objects. The Visual Computer, 2(4):227–234, 1986.

114



[156] Stella X. Yu and Jianbo Shi. Segmentation given partial grouping
constraints. IEEE Trans. Pattern Anal. Mach. Intell., 26(2):173–
183, 2004.

[157] Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes.
Sketch: an interface for sketching 3d scenes. In Proceedings of
the 23rd annual conference on Computer graphics and interactive
techniques, pages 163–170. ACM Press, 1996.

[158] Jingdan Zhang, Kun Zhou, Luiz Velho, Baining Guo, and Heung-
Yeung Shum. Synthesis of progressively-variant textures on arbi-
trary surfaces. ACM Transactions on Graphics (Proc. Siggraph
2003), 22(3):295–302, 2003.

115



Appendix A

Improving quality of 2D distorted

texture synthesis

(a)

(b)

Figure A.1: Font design using our system. The images are rendered
without (a) and with (b) patch boundaries.

One problem of the cross-sectional image synthesis technique shown
in the Chapter 4 is the quality of the generated image. Therefore, we
focus on this quality problem in this Appendix. We propose a new 2D
texture synthesis algorithm with its local orientation and scaling factor
controlled by a distortion field. This technique can be applicable to not
only volumetric illustration system but also to general distorted 2D tex-
ture synthesis. Our new algorithm produces much higher quality images
than previous methods, mainly due to a patch-based algorithm and lack

116



of resampling process. Most existing methods for distorted texture syn-
thesis use a pixel-based approach and output an image that has regular
grid alignment. Pixel-based approaches, however, are usually less suc-
cessful for visual quality than patch-based approaches. In addition, fixed
pixel layout requires resampling of an input image, which produces unde-
sirable degraded output. Our approach generates an irregularly sampled
image using a patch-based technique for distorted texture synthesis. Ac-
cording to a predefined distortion field, we first distort an input image to
form patches that have irregular pixel locations, and then merge them by
a graphcut technique extended to support irregularly sampled images.
Our method produces higher quality result than existing techniques, due
to patch-based large scale coherency and its omission of resampling pro-
cess. In our framework, an input image is treated as a set of independent
sample points, producing a set of irregularly distributed original sample
points. We also propose a hardware-accelerated method to effectively
compute an approximate alpha shape of a point set, which is used to
define a region of a point set and to construct a graph network used for
our graphcut algorithm.

A.1 Background

Recently, texture synthesis techniques have gained much attention
in computer graphics community and great number of applications are
proposed such as texture mixing, hole-filling, and non-photorealistic ren-
dering. Some application areas such as texture synthesis on arbitrary
surface [158] or volumetric illustration [108] require distorted texture
synthesis. However, in existing systems, pixel layout is predetermined
(usually a regular grid) before synthesis is performed, which causes mis-
match of pixel locations in original texture example and target image
thus requiring resampling of pixel colors. It is a common knowledge
that resampling causes significant degradation of image quality, unless
the target sampling rate is higher than the original one and also resam-
pling filter is carefully designed to avoid losing information. However, it
is also known that resampling based on purely sampling theory has var-
ious side effects such as infinite support of the filter kernel. Therefore,
virtually any practical resampling method loses information. Another
problem is that most existing distorted texture synthesis algorithms use
pixel-based synthesis because of its simplicity of creating a neighborhood
structure (the distortion field is assumed to be locally linear). However,

117



the quality of images synthesized using pixel-based method is usually
inferior to patch-based approach because of less coherency.

In this work, we propose a new patch-based distorted texture syn-
thesis algorithm that uses 2D irregularly sampled images to avoid re-
sampling (for short, we call an irregularly sampled image as an ISI in
our context.) The notion of an ISI is not new nor original especially in
the context of experimental science since sensor devices do not neces-
sary produce regular data, regardless of its dimension. Even commercial
software is available that handles irregular dataset [1]. We define an ISI
as a 2D image in which the pixel alignment is arbitrary. In other words,
it is a set of irregularly distributed colored 2D points. An ISI is rotated,
distorted, and non-integer translated without being resampled. In our
framework, an input (regular) image is first distorted to fit the prede-
fined distortion field. The result forms an ISI. It is then connected to the
partly completed target image (which is also an ISI) by using a graph-
cut technique [80] with our extension to find an optimal seam between
two ISIs. The graph structure between ISIs is temporarily constructed
using alpha shapes [29]. Intuitively, alpha shape is a polygonal region
that represents the shape of a point set which takes ‘alpha’ as a param-
eter. We also propose a method to effectively compute an approximate
alpha shape of a point set using graphics hardware. The resulting image
is provided again as an ISI that maintains the original sample points.
Our method achieves higher quality than existing techniques because
(1) the intermediate and final images are represented as ISIs and (2)
the algorithm adopts a patch-based synthesis that maintains large-scale
coherency.

A.2 Our algorithm

Our system inputs an example image and a distortion field function.
The distortion field function should be smooth for later optimization pro-
cess to work correctly. The function consists of two subcomponents: a
scaling function and an orientation function. The scaling function inputs
a 2D coordinate and outputs a scalar value that represents a magnitude
of scaling at the position. The orientation function also inputs a 2D
coordinate and outputs an oriented unit vector. Although they can
be specified independently in our implementation, they can contradict
(imagine the orientation function always returns (1,0) and the scaling
function differs point by point.) However, the optimization process tries

118



to minimize the matching error. Like other existing patch-based algo-
rithms, our algorithm consists of two phases: registration and stitching.
Registration phase translates and distorts an input image to find a good
location to paste a patch. This process uses an optimization of a cost
function to evaluate the quality of matching to a given distortion field
(Section A.2.2). Figure A.2 describes the entire procedure of our algo-
rithm.
Point-based stitching phase is further divided into three subphases: iden-
tifying pixels in the overlapping region, graph construction, and graph-
cut operation. We explain each process in turn (section 6.3.3-5), but we
first briefly mention our general representation for images.

A.2.1 Image as points

Images are usually provided as a set of pixels that are located on
gridpoints of a regular grid. Each pixel represents a discrete sampling
point of a continuous scene and stores the point’s attribute values, typ-
ically RGB color components. We rather use images that have irreg-
ular alignment of pixels, which we call an ISI. We do not assume any
predefined connectivity nor neighboring topological structure of points.
Instead, neighborhood structure is dynamically constructed from the al-
pha shape of points. Therefore, each image can be locally or globally
distorted, depending on the specific application. Although we mainly
focus on synthesizing distorted texture, we will show other examples in
a later section.

A.2.2 Registration

Typical image registration algorithms optimize an objective function
that evaluates the quality of matching. There are a variety of objective
functions that are closely related to specific optimization purposes. The
original graphcut paper proposes three methods for registration [80].
For initial placement of an example image, we closely follow [80]. While
the target region is not completely covered, a new patch is located so
that the patch contains both an already synthesized region and an in-
completed region. After the target region is fully covered, the new patch
is located so as to cover a “seam node” that has the largest error. A
seam node is an extra node that is added on a patch boundary for the
purpose of storing quality of cut for future patch placement [80]. A dif-
ference from [80] is that our method rotates and uniformly scales the

119



Example image

(patch)

Find a point to

cover (either on

the border or a

seam node)

Put a patch

on the location

Rotate and scale

the patch around

the center of the

patch, according

to the distortion

field on the center

Local optimization of

the patch shape to

entirely fit into

the distortion field 

Is there an

 empty region?

Is there a

seam node that has

a big error?

Randomly select

a patch location

Point-based stitching

End

Figure A.2: Flow chart of our algorithm.

120



patch after the patch placement according to the distortion field on the
center, and then locally distort the patch so as to completely fit it into
the distortion field (See Figure 6.2).
This local patch distortion is done on a point-by-point basis. We as-
sume that the alpha shape of the patch is precomputed and it consists
of one connected component (section 6.3.3). A seed point is selected
(typically the point which is the closest to the center of the bounding
box of the patch) and marked as “visited”. Then an unvisited point that
is closest to the seed point is selected one by one using a priority queue
and marked as “visited” after iterative optimization of its location. The
pseudocode is as follows:

function DistortPatch( Patch patch,DistortionField distortField )

    currentPoint = CenterOfPatch( patch )

    currentPoint.appliedDistortion

        = distortField.Eval( currentPoint.position )

    priorityQueue.push( currentPoint )

    while( priorityQueue is not empty )

        currentPoint = priorityQueue.GetTopAndErase()

        if( currentPoint.visited ) continue

        initialPosition = PredictPosition( VisitedNeighbors(currentPoint) )

        currentPoint.position

             = LocalOptimization( initialPosition

                                               , VisitedNeighbors(currentPoint)

                                               , distortField )

        currentPoint.visited = true

        priorityQueue.push( UnvisitedNeighbors(currentPoint) )

The function PredictPosition() computes an initial guess of the cur-
rent point location based on already applied distortions on neighboring
points. The applied distortion on a point is the result of the optimiza-
tion process of LocalOptimization(), which is not necessary equal to the
given distortion field’s value.
Function LocalOptimization() seeks the good location of the currentPoint

by minimizing the difference between approximate distortion (computed
from location of currentPoint and its neighbors) and given distortion
field. An energy function that takes x and y values of the currentPoint

as variables is defined. The gradient of the energy function is estimated
by sampling the energy function with small offsets in both x and y di-
rection. Then the location of currentPoint is iteratively improved by

121



modifying the location of currentPoint towards the steepest decent of
the energy function (typically, 3 to 6 iterations per pixel are sufficient.)
The energy function E has the following form:

E = (ScalingError) + γ(RotationError)

where γ is a user-defined weight. The two elements on the right side are
computed as follows:
Scaling error
A scaling factor is estimated by the current length of edges in the alpha
shape that are emanating from currentPoint to already visited points,
divided by the length in the original patch. The square difference be-
tween this estimated scaling factor and ideal scaling factor of the given
distortion field measures the fitting error of the scaling factor.
Rotation error
The orientation of currentPoint is estimated by edges that are emanat-
ing from currentPoint to already visited points. That is, the average
difference between each emanating edge’s orientation in an input image
(without distortion) and in the current distortion field (with distortion)
is defined to be the point’s current orientation. The square of angle dif-
ference between this estimated orientation and the desired orientation
from the distortion field defines the rotation error of the point.

Although this per-pixel distortion works, this process significantly
increases the computational cost in practice. In addition, local errors
cause an non-uniform patch shape, even if the given distortion field is
uniform. To avoid these problems, we may constrain the distortion (such
as an affine transform) or introduce multi-resolution distortion. We leave
this possibility as a future work.

A.2.3 Defining overlapping region

In our framework, the problem of seamlessly stitching two pre-
registered ISIs amounts to finding an optimal seam in the overlapping
region and removing a portion of points in the region bounded by the
seam. We first need to identify which points are in the overlapping re-
gion. Only those points in the overlapping region are of interest and
subject to possible removal. We use an alpha shape to define a (contin-
uous) shape of a point set and the overlapping region [29]. Intuitively,
alpha shape is a polygonal region that represents a shape of a point set.
Computing an alpha shape requires a predefined alpha value that de-

122



termines a maximum region of effect of each point. Although there are
several definitions of what an alpha value describes [30], we define an
alpha value as a radius of a region of effect. If two neighboring points are
close enough, say, the distance is equal to or below 2 · alpha, an edge is
spanned between the points that forms a part of the alpha shape. There-
fore, in 2D, the boundary of an alpha shape is a subset of the Delaunay
triangulation. A point in one patch is defined to be in the overlapping
region if and only if it is in the alpha shape of the other patch. In our ap-
plication, an alpha value is fixed. This may cause possible breaks in the
highly-distorted region. Setting a larger alpha value weakens this effect
but too large alpha value tends to close concave boundaries. If this is
not desirable, nonuniform or adaptive alpha value should be introduced.
We leave this possibility as a future work.

A.2.4 Fast approximate alpha shape computation with graph-
ics hardware

Exact alpha shapes can be computed from Delaunay triangulation
of the input points. However, this can easily form the bottleneck of the
entire process. Therefore, we propose a method to quickly approximate
an alpha shape using graphics hardware. The time complexity of hard-
ware accelerated method is O(N) where N is the number of points, while
an exact analytical method requires O(N log(N)).
We first compute a Voronöı diagram of an input point set by rendering
cones into a frame buffer [63]. A slight difference from [63] is that the
radius of each cone’s base is set as the corresponding alpha value (Figure
6.3 (a)(b)). Therefore, there are possibly some empty regions.
We then scan the rendered image in the frame buffer to find pixel bound-
aries where three regions meet (Figure 6.3(c)). Those points represent
triangles that belong to the alpha shape in the dual space (Figure 6.3(d)).
If there are points where four regions meet simultaneously, the points
are degenerate. To obtain a triangulated alpha shape, the quadrangle
formed by four points that correspond to four regions should be split into
two triangles. One of the two diagonals is selected so as for minimum
angle among 6 corners to be maximized. Note that points where three
or four regions meet can exist outside of the boundary box of the point
set. Therefore, the size of an offscreen buffer should be bigger than the
boundary box by the extent of alpha.
The resolution of the frame buffer determines the error tolerance. If the

123



size of each pixel of a frame buffer is larger than the smallest distance
between points in the set, there may be some points that do not appear
in the buffer. However, too small pixel sizing requires large frame buffer.
In our implementation, the user defines a unique pixel size as a tolerance
value and those points that do not appear in the frame buffer are simply
removed.
Finally, the triangles in the alpha shape are rendered into the frame
buffer. The resulting image is a rasterized version of the alpha-shape.
It is used to quickly determine if an arbitrary location is in the alpha
shape or not.

A.2.5 Graph construction

To apply a graphcut technique to ISIs, we first need to construct a
graph structure representing the cost of cut between points.
Firstly, the system selects points that are used as nodes of the graph.
There are two options; using all points in the overlapping region or us-
ing a portion of points. We use points that are from only one of the
two ISIs for several reasons: (1) Using all points causes higher density
of points, which requires a large offscreen buffer. Since the amount of
graphics memory is limited, smaller offscreen buffer is desired. (2) The
number of points significantly affects the computational cost of a graph-
cut operation. (3) We already have an alpha shape of each ISI that was
computed in the previous section. This alpha shape can directly be used
as the graph.
We use an ISI that has higher average point density than the other one.
The crude density estimate is computed from the Voronöı diagram and
a depth buffer computed in the previous section, by averaging depth
values of pixels where three regions meet.
Then the system assigns color difference cost on each node. Color differ-
ence cost of a node is computed by taking a squared difference between
the color of the node itself and the interpolated color on the other ISI at
the same location. Although this is simply done by just taking a squared
difference of color vector, it requires interpolation of colors because lo-
cation of pixels from different ISI does not match. Note that in our
context, interpolation is used to guide our graph-cut operation and not
for synthesizing new output points at prescribed coordinates. Therefore,
interpolation is not used for resampling inputs as conventional methods
do but rather for selecting appropriate points of ISIs. We just take 0-

124



(a) (b)

(c) (d)

Figure A.3: Hardware assisted alpha shape construction. (a) Input
points. (b) A cone is drawn for each point. The radius of each cone’s
base is set as the corresponding alpha value (c) Points where three re-
gions meet are searched (closeup). Those points correspond to a triangle
that forms the alpha shape. (d) Computed alpha shape.

125



order interpolation (nearest neighbor) for two reasons; the nearest point
is efficiently obtained by observing a Voronöı diagram precomputed in
the previous section and, higher order interpolation usually has a blurry
effect.
The remaining process shows much similarity to an existing method [80].
Edge cost is computed as the sum of two nodes on both ends, source and
sink nodes representing each ISI are added to the graph and connected
to the outmost nodes by edges that have infinite cost.

A.2.6 Merging point sets

After constructing a graph structure, an optimal boundary between
ISIs is computed as the minimum cut of the graph. The system then
merges points from two ISIs by using the boundary information. The
cut strictly splits nodes into two sets; source set and sink set. However,
in our algorithm, every node is from only one ISI. Therefore, one of
the source/sink sets should be discarded and replaced by the points
from the other ISI. To select appropriate points from the ISI, we define
source region and sink region by, again, the alpha shape of points. The
overlapping region is strictly divided into two regions and points to be
removed are determined by checking which region it belongs to.
Finally, seam nodes between new and old ISIs are added to the resulting
ISI. The seam nodes are generated on edges that form optimal cut.
However, the density of the seam nodes are usually much higher than
original ISIs, because graphcut is done on triangular mesh while ISIs
are originated from regular images, that is, quadrangular meshes. We
therefore remove seam nodes alternately.

A.3 Results

We applied our algorithm to various examples. The point sets are
rendered by their triangulated alpha shapes using polygon rendering
hardware instead of splatting. An example in Figure 6.4 shows a texture
synthesis result using our system without a distortion field. To create
this example, we randomly locate and rotate a new patch.

We developed a tool to interactively define a distortion field. “Curvy
field” tool enables the user to draw two curves that defines orientation
and scaling factor at the same time (Figure 6.5). The value ‘0’ is assigned
to the first curve and ‘1’ is assigned to the second curve. Then the two

126



(a) (b)

(c) (d)

Figure A.4: Our texture synthesis result without a distortion field. (a)
and (b) are the output and (c) is the source image. (d) is the closeup of
(b) (the seam color is changed to be clearly seen.

127



(a) (b)

(c)

Figure A.5: Curvy field tool. From the user-specified strokes (a), dis-
torted texture synthesis is performed (b) using a distortion field (c).

curves are linearly interpolated to form a scalar field as in Figure 6.5(c).
The scaling factor of each point is defined as an inverse of a magnitude
of the gradient vector while the orientation of the field is either the
gradient direction (rightward arrow in Figure 6.5(c)) or perpendicular
to the gradient vector (downward arrow in Figure 6.5(c)). Patch location
can be constrained to synthesize a texture as in Figure 6.6. Note that
the images can self-intersect. Therefore, one cannot synthesize an image
in a regular coordinate system and distort it later in this case.

Our point-based image stitching algorithm is also suitable to stitch
images in panoramic image mosaicing. Typical image mosaicing method
requires distorting multiple source images, based on homographies. Those
registered images are then stitched to form a single environment map by
either blurring the edge (which is sometimes called feathering) or finding
an optimal seam in the target pixel location. We rather propose to find

128



(a) (b) (c)

Figure A.6: Kiwi example. The patch placement is constrained so as
for top and bottom rows in the input image (a) match the external and
internal boundaries of the resulting image.

an optimal seam directly from input sample points. The stitched result
is provided as a set of original sample points, thus can be rendered with-
out any resampling artifact. Figure 6.7 shows an application of our new
point-based graphcut algorithm to an image stitching problem.

Note that we do not claim that our method does not have any pres-
ence of resampling artifact such as a Moiré pattern when rendered on the
screen. A Moiré pattern can appear because the source images them-
selves may already contain Moiré pattern and also because a typical
computer display has fixed resolution. We would rather emphasize that
our method does not have any intrinsic process that loses original infor-
mation. Therefore, the quality of the output image purely depends on
the original image quality and the final rendering environment. This is
especially beneficial for professional graphic designers. They currently
allocate extremely high resolution work space partly because repeatedly
applying distortions on their material causes significant degradation of
the quality. Therefore, designers usually let the resolution of their work
space even higher than high-end printers. However, simply introducing
irregularly sampled images and conduct the operations in those space,
unnecessary growth of resolution can be avoided.

A.4 Discussions

In this Appendix, we introduced a patch-based distorted texture
synthesis algorithm using irregularly sampled images (ISIs). We ex-
tended a graphcut technique to support ISIs and showed some applica-

129



(a) (b)

(c) (d)

Figure A.7: Image stitching example

tions. We also introduced a hardware accelerated method to compute
an approximate alpha shape of a point set.

Our possible extension is to handle variable alpha values. In our
implementation, too much distortion causes breaks of an original image
since our alpha value is fixed. We need to dynamically control alpha
values according to the distortion field.

130


